
Technical Report
CMU/SEI-96-TR-010
ESC-TR-96-010

Carnegie-Mellon University

Software Engineering ins1

Investment Analysis of Software Assets for Product Lines

James Withey

November 1996

V/f

Anproved to BU^ »el*3**

II'

x

W1119 037

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not io discriminate in admission, employment, or administration
of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of the
Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition. Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue." excludes openly gay, lesbian and
bisexuai students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University. 5000 Forbes Avenue Pittsburgh PA 15213 telephone
(412)268-2056.

Obtain genera! information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-96-TR-010

ESC-TR-96-010

November 1996

Investment Analysis of Software Assets for Product Lines

James Withey

Product Lines Systems Program

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FORT

Somas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1996 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNTVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTIBJLITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through Research Access, Inc., 800 Vinial Street, Pittsburgh, PA 15212.
Phone: 1-800-685-6510. FAX: (412) 321-2994. RAI also maintains a World Wide Web home page. The URL is
http://www.rai.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides ac-
cess to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential con-
tractors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact
DTIC directly: Defense Technical Information Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-
6145. Phone: (703) 274-7633.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

Preface v

v
v

1
1
2
3
6
8
9

11
11
12
13
14
16
18

21
21
22
24
25
26
27
28
28
29
30
30
33

35
35
36
37
38
39

- Acknowledgments

1 Introduction
1.1 Need
1.2 Investment Analysis

- Issues
- Approach
- Context

1.3 Structure of Report

2 Background
2.1 Product Line Approach

- Production System
- Assets
- Scope

2.2 Economies of Scope
2.3 Calculating Economies of Scope

3 Construct Asset Portfolio
3.1 Characterize Product Variety

- Pedestal Systems Product Line
3.2 Screen Patterns

- Criteria
- Kiviat Diagrams
- Pedestal Patterns

3.3 Select Assets
- Activity Costs
- Asset Flexibility
- Skill
- Pedestal Assets

3.4 Evaluate Portfolio

4 Model Investment
4.1 Net Present Value
4.2 Uncertainty
4.3 Decision Tree
4.4 Investment Decision

- Example

CMU/SEI-96-TR-010

4.5 Pedestal Asset Portfolio 40
- Deployment Strategy 40
- Decision Tree 41
- Cash Outflows 42
- Cash Inflows 43
- Investment Decision 45

5 Summary 49
5.1 Product Strategy 49
5.2 Approach 49
5.3 Optimization 51

A References 53

B Glossary 57

CMU/SEI-96-TR-010

List of Figures

1 Introduction 1
1.1 A Balance Between Objectives and Constraints 3
1.2 Cost/Risk Tradeoff 5
1.3 Conditions for Asset Development 8

2 Background 11
2.1 Production System 13
2.2 Software Assets for Different Phases of Application Engineering 14
2.3 Products in Car Navigation Market 15
2.4 Asset/Product Matrix 18

3 Construct Asset Portfolio 21
3.1 Pedestal with Optical Devices 22
3.2 Rosy Market Forecast 23
3.3 Dismal Market Forecast 23
3.4 Attribute/Segment Matrix 24
3.5 Pattern Criteria 26
3.6 Kiviat Diagrams for Pedestal Patterns 27
3.7 Pareto Graph of Activity Costs 28
3.8 Flexibility 29
3.9 Robustness 30
3.10 Pattern/Asset Matrix 31
3.11 Asset/Product Matrix for Rosy Market 32
3.12 Asset/Product Matrix for Dismal Market 32
3.13 Portfolio Criteria 33
3.14 Portfolio Comparisons 34

4 Model Investment 35
4.1 Decision Tree with Technical Uncertainty 39
4.2 Decision Tree for Pedestal Asset Portfolio 41
4.3 Estimated Effort to Use Target Tracker Asset (in Person-Weeks) 43
4.4 Recurring Effort in Rosy Market 44
4.5 Recurring Effort in Dismal Market 45
4.6 Decision Tree with Numbers 45

5 Summary 49
5.1 Summary of Approach 50

CMU/SEI-96-TR-010 iii

5.2 Different Product Strategies 52

lv CMU/SEI-96-TR-010

Preface

Purpose

Group, product line, and program managers are faced with allocating resources to
projects. Should all resources be dedicated to meet near-term deliverables? Or should
some be siphoned off to build software assets that may improve quality, flexibility, and
reduce cost and time-to-market of future products in the product line? These managers
also have to determine which assets to buy or build. The choices are many, ranging
from reusable code components to design models to application generators, and each
has a different risk and cash flow profile.

This report introduces an approach that will help managers make these allocation deci-
sions. The report outlines a planning and communication tool for analyzing investments
in software assets for product lines.

The goal of the approach is to provide managers a means to determine whether to build
software assets for a product line. It will help managers use marketing forecasts to rec-
ognize the software assets proposed by engineering that have the highest economic le-
verage across the variety of products.

Although the report is not a guidebook, the concepts, criteria, and investment modeling
techniques will be useful in making and justifying proposals for funding. The concepts
are drawn from the fields of microeconomics, corporate finance, marketing, R&D tech-
nology management, and software reuse.

Details about the approach will evolve through data collection. Next steps include
working with organizations that have developed assets for product lines. We want to
understand the risks and factors that influence asset selection and economic outcomes.
The goal is to have a better understanding of the relationships between an organiza-
tion's business environment, the software assets it develops, and economies of scope.

To give the reader a sense of how the concepts are applied in practice, a hypothetical
product line and assets are introduced; the reader follows the analysis of two assets pro-
posed for a pedestal system product line.

Acknowledgments

Many people contributed to this report. Mark Bell provided systems expertise and effort
estimates for the pedestal system example. He helped me model the system behavior
and identify common system constraints for a variety of products. Professor Fallow
Sowell at the CMU Graduate School of Industrial Administration gave advice on econ-

CMU/SEI-96-TR-010

omies of scope during the early stages of writing this report. Professor Vassant Naik at
the University of British Columbia reviewed an earlier draft, and gave invaluable ad-
vice on the investment model.

I wish to thank Paul Clements who actively listened to impromptu chalk board talks at
a moment's notice while the concepts in this report were being developed. I also want
to thank Jorge Diaz-Herrera for exciting discussions and for sharing with me a taxono-
my of software design techniques. Many thanks to Sheila Rosenthal for the extensive
literature searches and article retrievals.

John Bergey, David Bristow, Lisa Brownsword, Sholom Cohen, David Dikel, Mike
Mattison, Ken McNulty, and Linda Northrop reviewed earlier drafts, and made many
suggestions that sharpened the report. Kimberly Brune in Technical Communication
served as technical editor. Thanks to you all.

This report benefits greatly from the pioneering work of engineers and economists
studying flexible manufacturing systems (FMS). FMS encompass group technology1

and programmable assembly robots. In combination, the technologies free manufactur-
ers from having to produce large quantities of the same part before showing a profit;
manufacturers are in some cases able to produce parts profitably in quantities of one —
a case analogous to software. In studying the conditions and factors favorable for cap-
ital investment in FMS, economists and engineers developed strategies, concepts, and
decision variables that I found applicable to the software engineering domain.

Group technology: short production lines (cells) that produce similar but different parts that can be used in a
large variety of products.

vi CMU/SEI-96-TR-010

1.1 Need

Chapter 1 Introduction

1.1 Need

Managers can no longer afford to perpetuate the development and maintenance of soft-
ware using a labor-intensive, craftsmanlike process. As software becomes more preva-
lent in products, the costs and throughputs of this process affect an organization's
ability to satisfy customers and compete globally. If the goal is to improve an organi-
zation's responsiveness to evolving customer needs while reducing costs and/or in-
creasing profits, then managers must transform software development and maintenance
into an engineering process in which pre-developed, intermediate, and often incomplete
solutions — assets — are used to build and modify software in a product line. Rather
than treating each product as an isolated development project, managers must invest
strategically in software assets to gain competitive advantage in the battlefield or the
marketplace.

This report outlines an approach for analyzing the business value of software assets
used in a product line. It introduces concepts and techniques to help sort out the issues
involved in making an investment decision.

Suppose you are a manager responsible for four related products. You estimate that the
software portion of the first product will cost $600 thousand to develop. The software
in the next three products will be modifications of first product and will cost between
$250 and $300 thousand each. Then a senior engineer shows you the following data
based on early reuse experiences at IBM, NEC, Toshiba, GTE, AT&T, and HP [HP 93]:

• 1.5 to 2 times improvement in time-to-market

• 2 to 5 times reduction in maintenance costs

• 5 to 10 times improvement in quality

• 12 to 15% reduction in development costs at reuse levels of 50 to 80%

She explains that these results were accomplished by defining reusable components and
devising processes and tools for composing new applications using these components.
She estimates that the cost of building reusable software may total $950 thousand for
the first product, and insists on technical grounds that the total cost on products two
through four will be reduced by more than 25%. Although the first product will take
longer to develop, she feels sure that the next three products will be delivered to the cus-
tomer sooner.

CMU/SEI-96-TR-010

Chapter 1 Introduction

You ask yourself, "Is it worth investing the extra time and money now to build software
assets for reuse?" You answer, "Probably not." You then talk to marketing and learn
that the product line is being expanded, and possibly 8 different products will be devel-
oped over the next three years. How does this information change your decision to build
assets? Do you develop an architecture, components, and an engineering process for a
line of products, or do you continue to craft each product independently, lifting code
from the previous release?

An investment analysis that helps to recognize economically attractive reuse opportu-
nities has not been developed. Because project managers perceive that the initial costs
to develop a software asset are too high and it takes too long to break even, finding
sponsorship to build software assets is difficult. Industry organizations that have devel-
oped assets had to create their own economic models to determine business value. SRI
International reports that "economic and accounting issues are the biggest — and prob-
ably the least understood — of all barriers to successful component-based software de-
velopment implementation" [Dewey 95].

Randall Macala from Boeing, reporting on the company's experiences developing soft-
ware assets for a product line, recommends performing a rigorous business case analy-
sis. The analysis

"consists of a technical evaluation and an evaluation of the costs and
schedule of the potential product line. The technical evaluation includes
an analysis of the feasibility of engineering the domain and the evalua-
tion of the amount of functionality shared by the product line's family
members. The cost and schedule evaluation involves identifying what
product line features will be needed and when, an estimated cost of de-
velopment, and a predicted return on investment" [Macala 96].

He acknowledges that it is not easily done: "The business portion of the analysis re-
mains incomplete" [Macala 96].

1.2 Investment Analysis

In general, four kinds of software estimating can occur in an organization:

• Senior managers estimate business performance (e.g., profit or market
share) of a strategic mix of software-intensive products.

• Group, technology, and product line managers estimate the return on
investment for improvements in software production. They choose
investments considering the mix of products defined in the business
strategy.

CMU/SEI-96-TR-010

1.2 Investment Analysis

• Project managers estimate cost and schedule of a software project.
Included in the estimate are the software assets that have been
developed.

• Engineers estimate attributes (e.g. performance, complexity etc.) of a
software product.

This report focuses on the investment decisions of managers who are responsible for
the production of an existing or potential line of products. These managers usually have
limited resources to allocate among competing investments in software process im-
provement, software technology, and software assets. Managers want to choose those
projects with the greatest potential return on investment. Project proposals that provide
an understandable and reliable analysis of return win over ones that do not.

Investment analysis is a process for defining and evaluating an investment. It involves
specifying the investment, analyzing the uncertainties, constructing a spending strate-
gy, and quantifying the costs and benefits. This analysis links the strategic and technical
merits of an investment to its financial results.

Issues

Investment analysis of software assets for an existing or potential product line is not
easy. Defining the investment (i.e., deciding which assets to make or buy) involves
pooling insights from different groups. Criteria are needed to help a team screen candi-
date assets. Evaluating the investment involves estimating incremental costs and cost
savings (or profit) over the lifecycle of the assets. If the costs and savings are uncertain,
tasks should be added to the investment to develop the information. The investment
should be structured so that a satisfactory resolution of the tension between manage-
ment objectives and constraints, as shown in Figure 1-1, is achieved.

Objectives Constraints

Shorter time-to-market

Lower costs

Greater flexibility

Higher quality

Limited funds

Limited time

Limited talent

Low risk

Figure 1-1: A Balance Between Objectives and Constraints

Identifying software assets with the highest economical potential is a technical chal-
lenge. Although between 45% and 85% of a new software product contains functional-
ity that exists in prior products [Cusumano 91, Lanergan 84], not all this functionality
should be developed as assets. The customization required for each product may be so
much that little work would be eliminated or avoided using an asset. Nor should all as-

CMU/SEI-96-TR-010

Chapter 1 Introduction

sets be software components. For example, when there is not a one-to-one mapping of
functionality to a software module, a guidebook or a specification language may be
more cost effective.

Because different assets have different properties, they will achieve the objectives in
Figure 1-1 to different extents. Software assets vary in:

• the skills required to develop and use them

• the software lifecycle activities that they support

• the effort required to build and use them

• the range of product changes that they can accommodate

Their economic benefit depends on the organization's current skills and cost drivers,
and on the variety of products planned in the product line. For example, a decision may
be between purchasing middleware software (database and network service compo-
nents) that is adapted using C++ and purchasing a rapid application development
(RAD) tool. The RAD tool requires less skill to use and work is done at the application
problem level. The middleware/C++ alternative is more flexible (i.e., it can be used in
a greater variety of products), but it is also more complex and requires more knowledge
of C++ and system protocols. Depending on current costs, availability of C++ skills,
and the variety of products to build, one will be selected over the other.

Thus, to define the investment, criteria for screening the most promising candidates are
needed. And since costs and benefits vary, a combination of different assets may be
needed to achieve overall investment objectives.

There is also considerable technical and market risk in building and using software as-
sets. For example, the solution common to members of the product line may turn out to
be too immature or unstable. Or some assets will end up costing much more to develop -
and maintain than expected. If the market weakens, and some products are not devel-
oped, then some assets will not be used as much as originally expected, and this will
affect the return on investment. Wayne Lim reports in one study that some work prod-
ucts developed at a Hewlett Packard facility produced a net loss. "The economic
gain/loss ranged from a gain of 43.3 engineering days to a loss of 31.5 engineering days.
The 31.5 engineering day loss was the result of fewer reuses and higher maintenance
costs than expected" [Lim 92].

Given these uncertainties, an investment should be made incrementally. It should be di-
vided into tasks that make costs commensurate with risks. Figure 1-2 shows a cumula-
tive cost curve for an hypothetical investment. Typically the largest costs are not in the
feasibility task where technical uncertainty is the highest. They are in the asset devel-
opment task where risks are definable and therefore more manageable.

Each task tests an assumption about the investment and produces information. For ex-
ample, one task could be collecting cost data on the current process and benchmarking
other organizations; another task could be the design and evaluation of an architecture.

CMU/SEI-96-TR-010

1.2 Investment Analysis

high

Cumulative
costs

low

assets deployed

task 2
task 1 •

task 3

high low

Risks

Figure 1 -2: Cost/Risk Tradeoff

Given the information, a manager can choose to continue, delay, or stop investing more
money. In other words, you do not move up the cost curve unless the results from a task
reduce technical risk or show that market conditions are favorable. The plan of action
consisting of these tasks is referred to as a deployment strategy. An optimum strategy
is one that maximizes rightward movement and minimizes upward movement in Figure
1-2. An optimum strategy includes making management and organization changes as
well as building software assets.

Most current reuse economic models that estimate return on investment adopt a static,
accounting view of investing [Gaffney 92, Henderson-Sellers 93]. They assume that
managers have only one decision: to start the investment. But in fact, they will execute
different options as they become available throughout the investment. In traditional ac-
counting, asset costs are amortized over the number of reuses or are treated as overhead
on labor hours. Return-on-investment estimates are incorrect if the number of reuses
and cost savings are at all uncertain. Since the analysis is performed after-the-fact, sig-
nificant opportunities that would be identified while defining the investment are
missed.

Most current models fail to establish a basis for comparing investments. To help man-
agers allocate resources, investments are usually discounted by the opportunity cost of
capital. This is the return that could be obtained if the cash used for the investment was
placed instead in stocks and bonds with the same risks. By discounting all investments
to their appropriate cost of capital, they can be compared to the same standard: the re-
turn in the equity markets.

An investment in software assets is a series of options that management exercise to re-
ceive future benefits or additional options. Completing one task successfully gives you
the option to continue with the project and increases the chances of achieving the de-
sired benefits.

CMU/SEI-96-TR-010

Chapter 1 Introduction

Current approaches often fail to:

• provide criteria that help to compare candidate software assets

• consider other lifecycle assets besides code modules

• focus on cost drivers in the lifecycle. (Most focus on reducing the lines
of code that have to be redeveloped from product to product, rather than
reducing or eliminating the software development and maintenance
activities that incur the most cost from product to product.)

• develop a strategy for managing technical risk

• incorporate future decisions that depend on market and technical
outcomes

• establish a basis for comparison to other investments and account for
variation in the opportunity cost of capital. (Depending on the risks, a
different discount rate may be used.)

• consider the variety of products in the product line

Some economic models are designed to calculate the project costs to build or reuse soft-
ware components [Boehm 95, Poulin 93], rather than compare software assets and es-
timate investment return. They answer questions such as, "What is the estimated cost
to my project to build these components for reuse?" or "What is the savings from reus-
ing these components?" They do not answer the question, "What is the return on invest-
ment from building and using these components in a product line?" Project costs are
used in estimating return on investment, but the issues above still apply.

Approach

This report introduces an approach for defining and evaluating investments in software
assets. To define the investment, a team answers the following questions:

• What software assets are likely to shorten time-to-market, increase
quality and lower costs with minimum risk and expense? For example,
would a code generator or a class of objects be a better investment for
producing multiple versions of a user interface?

• What is the best way to phase in software assets so that exposure to
uncertainties in asset technology and the market is reduced?

Evaluating the investment, a team answers the following question:

• Would the time, money, and engineering expertise used to acquire
software assets for use in software development and maintenance be
worth it? Are the benefits to the product line worth the expense and the
risks?

CMU/SEI-96-TR-010

1.2 Investment Analysis

The purpose of this approach is to enhance the abilities of managers to define asset de-
velopment projects that minimize risk, to allocate limited resources to the right projects,
and to reason about issues affecting product line objectives. The objective is to help
managers make economically sound decisions regarding the development or acquisi-
tion of software assets for product lines.

The approach is a two-step process. First a portfolio of candidate assets is constructed
based on a market and technical evaluation of products in a product line. Then a strategy
for deploying the portfolio is constructed and modeled to estimate return on investment.

Portfolio analysis is used to optimize investment objectives and diversify risks. Portfo-
lio analysis is used in marketing [McDonald 95], finance [Brealey 91], and R&D in-
vestment [Roussel 91]. Financial portfolio analysis involves evaluating the risk and
return of different combinations of stocks to determine the combination that satisfies an
investor's objectives. Marketing portfolio analysis places marketing segments in a ma-
trix according to their attractiveness.

In this approach, we use portfolio analysis to guide the selection of software assets.
Candidate assets are compared along dimensions that affect investment objectives, and
a combination is selected that optimizes the potential for cost economies and shorter cy-
cle time while minimizing risk. The analysis helps a team to reason about asset choices
at an appropriate level of detail. For example, a manager may ask

• Why does it take so long to build this asset?

• If we changed the scope of the asset by making it less flexible, would
the development budget be smaller?

• Why does this asset affect current costs less than another, when its scope
is so much larger?

Dynamic discounted cash flow analysis is used to estimate the return of the portfolio.
Instead of assuming a single cash flow scenario (a static analysis), this analysis involves
laying out several decision paths and scenarios that may occur as the organization
builds the portfolio and requisite organization infrastructure. The analysis involves de-
fining the technical and economic uncertainties in the investment, and building a deci-
sion tree that includes the contingent decisions that management can make in the future
and the probable cash flows for each decision. This decision tree models the deploy-
ment strategy developed by the team. The present value of the investment is determined
by working backwards along branches of the tree from the future to the present, aggre-
gating the cash flows for the best possible decision (given current information) at each
joint in the tree. The cash flows are discounted by an appropriate risk-adjusted interest
rate.

CMU/SEI-96-TR-010

Chapter 1 Introduction

Context

This approach should be used by commercial organizations when the business goal is
to introduce a variety of products more quickly than the competition, the market is es-
tablished, and other organizations are competing to provide innovative features and ser-
vices. In such situations, the source of profits (or stable budgets) is from software
upgrades and new releases targeted to specific sets of customers. When new products
and market growth are positively related (shaded region in Figure 1-3), building soft-
ware assets for multi-use within and across product lines is a strategic investment.

Asset-based
development

Market growth
(# new users/period)

25%
•A

10%

5% •<— point solutions •B

1 3 10 30
Product variety

(total # different releases/period)

Figure 1-3: Conditions for Asset Development

Consider points outside the shaded region. At point A in Figure 1-3, the market is new:
Growth is not driven by the introduction of a variety of products. Product sales are high
for some other reason, most likely because the product provides a benefit or a service
not yet offered by the competition: for example, an intelligent information browser for
the Internet. The market is uncertain; marshalling the technology is more important
than designing for variety. At point B, the market is saturated with choices. Additional
products do not contribute greatly to growth or income. Unless development costs are
very high, streamlining production costs through software assets will provide small or
negative returns.

Government organizations should use this approach when a large portion of system
functionality is replicated from product to product and flexibility in development is
needed to adapt or extend software for use in new situations. This approach will help
assess the value of investing in interoperability.

The approach described in this report only estimates the advantages that software assets
add to production: lower costs, shorter cycle time, fewer defects, etc. The analysis is
based on the extent that software assets are shared from product to product — the extent
to which they produce economies of scope. Asset attributes that add value to the prod-
uct, such as real-time fault tolerance or high security, are not included in the analysis.

CMU/SEI-96-TR-010

1.3 Structure of Report

1.3 Structure of Report

This report has five chapters.

Chapter 2 introduces terminology and concepts needed to frame the investment prob-
lem.

Chapter 3 walks the reader through a process for constructing a portfolio of software
assets. A hypothetical product line is used to elaborate the concepts that are introduced.

Chapter 4 explains the approach to investment modeling and then estimates the return
of an architecture and two components for a product line.

Chapter 5 summarizes the approach and raises some strategic issues.

CMU/SEI-96-TR-010

Chapter 1 Introduction

10 CMU/SEI-96-TR-010

2.1 Product Line Approach

Chapter 2 Background

2.1 Product Line Approach

Imagine a firm that sells products that provide geographical location information in dig-
ital form to users in diverse situations. The firm has a line of products for the taxi dis-
patch market, and is entering the car navigation market. The few car navigation
products are loaded with features and are priced as high-tech novelty items, whereas the
taxi dispatch product line has a lot of depth, with products priced according to the num-
ber of taxis and square miles supported.

A product line approach entails designing software for the taxi dispatch line such that
portions of the functionality are duplicated from product to product. It entails building
software assets that minimize the effort necessary to duplicate this functionality in soft-
ware, and it entails implementing a software process that incorporates the use of these
assets (and other existing software) to make new or revised products.

An analogous approach is found in the automobile manufacturing industry. Research-
ers at the University of Michigan studied Toyota's product development process to un-
derstand how the company makes better cars more quickly and cheaply. One supplier,
Nippondenso, a world leader in radiators and alternators,

"deliberately develops a set of designs for a set of automobiles, not a
single design for a single model. That is, while developing targets for its
new designs, it explicitly defines the set of automobiles in which the new
product can be used. It gathers information on all prospective Toyota
car models and the anticipated requirements. It then designs a product
family around a single concept, producible on the same line. Nippon-
denso offers its customers more than 700 different alternators, provid-
ing customers with a wide variety of products while standardizing the
production process; it calls this approach 'standardized variety.' For ex-
ample, the development group will develop a modularized plan to stan-
dardize the various components of the alternator to meet all
requirements. It might develop three different body types, nine different
wire specifications, four different regulators, etc. all mutually compati-
ble" [Ward 95].

A product line approach enables an organization to meet changing customer needs
more cheaply and at a quicker pace than the competition. For example, Nippondenso
offers a catalog of components that cover most of its customers' needs. Toyota chooses

CMU/SEI-96-TR-010 11

Chapter 2 Background

from this catalog rather than contracting for a custom design primarily because the tech-
nology is advanced and because "the variety is so large and carefully designed that tai-
lored products offer few advantages" [Ward 95].

To implement a "standardized variety" approach in software, organizations build a pro-
duction system that can support the simultaneous development of software for multiple
products. Rather than taking what was produced for a specific customer and adapting it
for another customer, you expand the scope of the problem to be solved and develop
common software solutions for a line of products. You develop a base of software as-

sets.

Production System

A product line approach refers to a software engineering capability tuned to producing
members of one or more product lines. Intrinsic in the capability are two lifecycle pro-
cesses. One lifecycle focuses on the development of assets. This process is usually re-
ferred to as domain engineering. The other lifecycle process focuses on the
development of software products. This latter process uses software assets to build re-
lated but different products. It is often referred to as application engineering.

In many organizations, domain engineering and application engineering begin under a
single project. As organizations evolve a product line approach, the two processes often
become separate functions linked to marketing.1 Organizations evolve into what Dem-
ing refers to as production systems [Deming 93]. A production system is a way of or-
ganizing people and functions to improve continuously the production capability and
core technologies of an organization.

Figure 2-1 shows Deming's production system adapted to software. The boxes repre-
sent key functions in the system. The arrows show the down-stream customers for the
process of building and using software assets. In practice, of course, all functions talk
to each other: marketing to application engineering, application engineering to domain
engineering; and cross-functional teams develop and deploy software assets and pro-
cess improvements. Management facilitates the flow of information among these func-
tional groups. They motivate the groups to coordinate their activities and engender
mutual commitment to one another's success.

Domain engineering is an upstream supplier of assets and processes to application en-
gineering. It consists of three activities: domain analysis, domain design, and domain
implementation. Domain analysis identifies the similarities and differences in software
requirements across a variety of products. The output of domain design is typically ro-
bust design and component specifications. Domain implementation packages the de-
sign and component specifications into a usable form for application engineering,

For example, this is the organizational structure evolved at Celsius Tech [Brownsword 96] and Hewlett Pack-
ard [Rix 92]. A separate development group supplies components to customer projects in different business
units.

12 CMU/SEI-96-TR-010

2.1 Product Line Approach

Software
Asset
Management

software
assets

Domain
Engineering

standard
inputs 1

application

Application
Engineering

software

' 1
imp

cess
movements

Needs
Analysis
(Marketing) critical

product

feedback

features

Distribution

product
lines

User

Figure 2-1: Production System

including class libraries, code generators, and design handbooks. To facilitate integrat-
ed problem solving, application engineers usually participate in domain engineering ac-
tivities.

Assets

The assets supplied by domain engineering depend on the solutions common to the
products in a product line. Reusing these solutions reduces or eliminates work that oth-
erwise would be required to build each product. Typically design and programming
work that only needs to be done once is codified in assets, leaving to application engi-
neering the work that differentiates each product. Assets thus narrow the decisions that
have to be made by application engineers; depending on the asset, requirements analy-
sis, design, coding, integration, or testing tasks are simplified.

A software asset is a description of a solution or knowledge that application engineers
use to build or modify products in a product line. To reduce work, the description must
be able to explain, or implement through manipulation, changes necessary for different
products. The description may be executable.

A partial solution or knowledge is embodied in an asset to make it tangible to an appli-
cation engineer. For those assets that embody a partial solution, mechanisms are pro-
vided in the description so that changes can be made without full knowledge of the
inner-workings of the asset. For example, a common function may be implemented as
a generic software component in which specific behavior is defined via parameters. The
same function may be implemented as an abstract class that is subclassed to create spe-
cific software instances. Or, for multiple changes to products, a compiler of a domain-
specific language may be used to generate software code.

For those assets that embody knowledge, the description is structured so that the engi-
neer can traverse it to find specific information about making changes. For example, an
engineer may search a domain model for all the variations in behavior that were antic-

CMU/SEI-96-TR-010 13

Chapter 2 Background

ipated in a common function at the time it was built. The same engineer may review an
architecture to identify the software modules that must be changed and which design
conventions to use. An engineer may browse tag fields in a product notebook to learn
the physics modeled in the software.

Figure 2-2 lists many of the common assets that support different phases in the appli-
cation engineering process. Prototypes of the system, domain models, or a requirements
database help engineers to understand and confirm changes desired by customers for
new or enhanced products. Simulation tools, notebooks, architectures, and design
records help engineers understand the software as a whole as well as the portions that
have to be changed. These changes are implemented in software by modifying, instan-
tiating, generating, and/or combining software components, and then by validating the
resulting system using existing test cases and data or regression testing tools.

Prototypes

Domain models

Requirements database

1 X

Simulation

Notebooks

Architectures

Design record

Requirements
Analysis

Comprehension

A requirements

Component libraries

Frameworks/toolkits

Specification languages
and code generators

Development

Test cases

Regression test
generators

Test data

| Test I

A software
changes

A system

Figure 2-2: Software Assets for Different Phases of Application Engineering

Not all of these or other assets need to be built for application engineering. One objec-
tive of the investment analysis approach is to determine which assets recommended by
engineering will have the greatest economic return.

Scope

In a product line approach, an organization invests in a production system and a set of
assets to reduce the total costs and time-to-market for a mix of products. The number
of different products in this mix is referred to as its scope. It is important to distinguish
the scope of products that can be built from a set of assets from the scope of a product
line. They are not necessarily the same. The economic return of an asset depends sig-
nificantly on the times the asset is used to build members of a product line. But the num-
ber of different products that can be built using assets is constrained by the solution (of
which the assets are a part) and not by the market. This section elaborates on this dis-
tinction in more detail. Strategic implications of this distinction are discussed in the last
chapter of this report.

14 CMU/SEI-96-TR-010

2.1 Product Line Approach

A product line is a group of products sharing a common, managed set of features that
satisfy the specific needs of a selected market. These features provide a core benefit to
customers in the market. Individual products in the line, however, differ along attributes
that affect the buying behavior of different sets of customer in the market; for example,
quality, price, reputation, auxiliary features, look and feel, and distribution channels
[Kolter 91].

The assortment (scope) of products in a product line is determined by market demand.
Companies seldom grow by providing only one product to customers. To increase mar-
ket share and revenue, companies add additional products that offer unique features for
particular customers. Their goal is to define and build products that get closest to satis-
fying subsets of customers who, as a whole, comprise the market.

For example, recall that the product line for the car navigation market consists of prod-
ucts that provide information about the real-time position of a car relative to its sur-
rounding environment and final destination. Figure 3-1 breaks the car navigation
market into segments and lists some attributes that vary across these segments. Each
segment represents a set of customers with a particular profile of needs and preferences.
For example, taxi drivers and couriers would use car navigation devices to identify des-
tinations and the fastest path to get there. Drivers of off-road 4x4s would use car navi-
gation to locate rough terrain and impassible streams.

Segments

Attributes

city
streets

highway
segments

terrain
overlay

customer
profile 1

V
product

car trip
planner

V

taxis,
couriers

V

class 2
4x4s

Figure 2-3: Products in Car Navigation Market

The rows show a small subset of product attributes: the different types of geographic
information that are provided in different products. (Remember there are other at-
tributes such as price and level of service.) The check marks indicate which attributes
are important to a specific customer segment. A bundle of these attributes describes a
product (see ovals in Figure 3-1). The scope of products sold in the car navigation mar-
ket form a product line. The scope is determined by marketing, including target custom-
er segments, distribution channels, pricing, and customer service.

Quality refers to the ability of the product to function as desired.

CMU/SEI-96-TR-010 15

Chapter 2 Background

A product family is the group of products that can be built from a common set of assets.
Products in a family typically share a design, components, and norms for system inte-
gration [Sanderson 91, Meyer 93]. The scope of the family depends on the robustness1

of the solution unifying the assets into a functioning system, including the physics or
business rules, the coordination strategy used for data and control, and the system plat-
form. These abstractions lend stability to the structure of the software, thus enabling
software components to be developed for reuse.

These solutions and the possible products that can be built are independent of market
demand. In our example, both the taxi dispatch and the car navigation product lines are
part of a product family centered around a digital, geographical database system that
processes in real time the location of moving vehicles. Alternatively, a product line may
encompass more than one product family. The scale of features is so great that, for ex-
ample, a different system architecture is required to handle the higher data throughputs

of the high-end products.

Thus, a product line approach involves building software assets and a production sys-
tem for a product family whose scope encompasses a product line. A product line con-
sists of products sold in a market. A product family consists of the products that can be
built from a common solution and a set of assets. A production system is a way of
organizing people and functions to improve continuously assets and products in product
line.

2.2 Economies of Scope

Economies of scope can measure the advantage of a product line approach over an or-
ganization's current process. Economies of scope are the savings (or profit) that are ob-
tained from using technology to build a greater diversity of outputs (e.g., a greater
variety of widgets) with the same or less input (e.g., person hours). This contrasts to
economies of scale where savings occur from using technology to produce a greater
volume of a single output (e.g., a greater number of identical widgets) with the same or
less inputs. Economies over an organization's current process result when fewer inputs
are needed to product a greater variety of products.

In the manufacturing industry, economies of scope exist when one plant can produce a
variety of products at a lower cost than a combination of separate plants, each produc-
ing a single product, can. A company producing both cars and trucks at one facility has
lower costs than two companies, with one producing trucks, and the other producing
cars [Pindyck 91]. This is because the single company can share designs, parts, and as-
sembly techniques common to both types of products. For example, Chrysler saved

l. Robustness refers to the ability of a solution to be extended or adapted to accommodate changes in product
attributes without other key attributes either being lost or becoming unpredictable. The solution has suffi-
cient flexibility to enable it to evolve into many variants.

16 CMU/SEI-96-TR-010

2.2 Economies of Scope

money by producing different car models from one design. From 1980 until the cab-
forward design was introduced, all new cars in the compact, sports car, minivan, and
full-size product lines were variations of the K car design. New models were part of a
K car product family [Boone 89].

In the airline industry, the creation of hubs is another example [Huston 88]. When the
industry was deregulated, airlines were faced with the problem of gaining market share
and offering a variety of destinations from each city while minimizing the increase in
the number of aircraft. Airlines discovered that by redesigning their routes to feed pas-
sengers to intermediate collection points (hubs), they could offer a greater variety of
destinations with fewer aircraft. The greater variety of destinations also increased the
volume of passengers to the extent that economies of scale were achieved at the hubs.

In software, economies of scope measure the capability of a production system to lower
input quantities as greater variety is produced. This occurs whenever an input shared in
two or more products is subadditive [Panzar 81]: that is, fewer person hours are needed
if the products are produced jointly than if the products were produced independently.
A software asset that can be used in a large variety of products with less effort than is
currently expended exhibits economies of scope. Designing products in a line to be
composed from standard parts (instead of custom-built, unique solutions) will produce
economies of scope.

Economies of scale measure the capability of a technology to lower input quantities as
a greater amount of one kind of output is produced. Economies of scale exist whenever
increasingly smaller units of input are needed to produce another unit of output. For ex-
ample, the costs of laying and operating eight-inch pipe are not much more than the
costs of laying and operating four-inch pipe, but the volume of oil that can be transport-
ed is nearly 6/10 greater. A software tool that produces more lines of code with less ef-
fort exhibits economies of scale.

You cannot substitute a measure of economies of scale for a measure of economies of
scope: Economies of scale and economies of scope measure two distinctly different ca-
pabilities. Producing a greater variety of software with less effort and at a faster speed
does not correspond to an increase in lines of code per hour. For example, when modi-
fying one component, it may only take a few hours to change many lines of code be-
cause the logic that checks for legal input values is repeated in various forms
throughout the program. Changing another component may involve many hours of
analysis, yet only require the modification of a few lines of code. Building and reusing
software components may decrease the number of lines of code produced per person
hour [Henderson-Sellers 93].

Diseconomies of scope occur from mismatches of assets and from poor coordination.
For example, architectural mismatches occur when different assets hold conflicting as-
sumptions about the structure of the application, its development environment, or its
operating environment [Garlan 94].

CMU/SEI-96-TR-010 17

Chapter 2 Background

Poor coordination occurs when there is no central control of a production system.
Management of the software process must extend beyond a single development project
and a single time period to include multiple projects over multiple years.

To illustrate the economies of scope for a production system, consider the firm men-
tioned earlier that sells products that provide geographical location information in dig-
ital form to users in diverse situations. You may recall that this firm has a line of
products for the taxi dispatch market, and is entering the car navigation market. This
firm has now expanded its product mix and now sells new systems in four product lines:
house arrest, home security, police staffing, and car navigation. Figure 2-4 shows a par-
tial list of the assets that are shared across these products. The check marks indicate the
sets of products that employ the asset. The pattern of check marks indicate which assets
are used the most.

^^Products

Assets^^
house
arrest

home
security

police
staffing

car
navigation

geographic
database V V V V /

remote
control
interface

V V \

locator
specification
language

V V /

Figure 2-4: Asset/Product Matrix

From this matrix of assets and products, you can see which assets have more value.
When an asset is used in a large percentage of the products in a product line that is part
of a growing market, it is more valuable than an asset that is used in a small percentage
of the products in a product line that is stagnating.

When the goal is to create more variety with less effort, as is the case for software de-
velopment, any investment analysis of assets must be based on economies of scope and
not economies of scale. Through investment in assets, we seek to maximize what can
be shared across different products. Economies of scope exist when it is cheaper to use
specific combinations of software assets to produce multiple products.

2.3 Calculating Economies of Scope

Economies of scope are calculated based on opportunity costs. Building software sys-
tems with assets presents an opportunity to reduce costs and increase profits or market
share. This opportunity is foregone when you choose to continue using the organiza-

18 CMU/SEI-96-TR-010

2.3 Calculating Economies of Scope

tion's current process rather than invest in software assets. The net loss of benefits
from a product line approach is an opportunity cost of using the current process. An op-
portunity cost equals the net benefits (positive or negative) from using the same re-
sources in a rival course of action.

Opportunity costs vary across organizations, and within organizations, opportunity
costs vary across development activities. For example, if in one organization, projects
coordinate the development of common application services, the opportunity cost from
not investing in additional assets may be negligible since the organization is already
sharing inputs. However, in an organization in which projects are working in isolation
without assets, the opportunity cost will be much higher.

A cost function for economies of scope is difficult to construct because the economies
depend on the variation in product variety, and because software changes cannot be
measured in constant units that correspond reliably to effort and hence, costs. Thus, you
can construct either an input minimization function that compares quantities of inputs
or a profit maximization function that compares revenue streams.

A profit maximization function determines economies of scope from profit margins
rather than from input cost savings. Thus, you can consider the impact of software as-
sets on revenues as well as on costs. For example, a production system with strong
economies of scope will have a shorter product cycle time. Because less effort and con-
sequently less time is needed to build a different product, the product reaches the mar-
ket sooner. Any increase in revenues resulting from this would be included in the
function.1 In addition, assets will be chosen for their contribution to profits. Thus, an
asset that costs more and is used in fewer products than another asset may still be more
valuable if it is used in products having a higher probability of higher revenues.

Although the advantages of a profit maximization function have been outlined, the con-
struction of a function is complex and still needs investigation. Because a profit func-
tion includes input costs, and because the purpose of this report is to introduce concepts
for valuing software assets used in a line of products, we introduce an input function.

Equation 1 gives a general formula to calculate economies of scope based on differenc-
es in input quantities (effort) needed to perform activities that accomplish an outcome.
Essentially, the total recurring costs to use M number of assets in a given V vector of
products are subtracted from the total costs to produce the equivalent outcome using the
current process and existing assets.

The process outcome being compared is usually an artifact, and the artifact depends on
the assets. For example, if the assets are components, the artifact is the portion of sys-
tem behavior implemented in software. If the asset is a simulation tool or a guidebook,

l. McKinsey and Co. developed an economic model that shows that high-technology products that reach the
market six months late, but within cost will earn 33% less profit over five years; whereas meeting the market
window but being 50% over cost will reduce profits by only 4% [Dumaine 89].

CMU/SEI-96-TR-010 19

Chapter 2 Background

MV MV
(1) „ x~" V current current v V assets assets sM = LLyij w -LLyij wü

' j i j

Where:

SM = economies of scope for portfolio of assets M

y = quantity of effort

w = cost per unit of effort (hourly expenses)

M = number of assets in portfolio

V = number of planned products

the artifact may be a document of design changes. Generally the calculation involves
comparing costs of the activities (including rework cycles) required to produce the ar-
tifact. Since activity cost data is not always available, the formula in Equation 1 can be
adjusted somewhat to accommodate the data that is available. The above formula as-
sumes that for the current process, the cost per unit of effort, w, is constant; whereas for
the process with assets, the cost can vary from asset to asset.

20 CMU/SEI-96-TR-010

3.1 Characterize Product Variety

Chapter 3 Construct Asset Portfolio

To maximize economies of scope as defined in Equation 1, we need to consider non-
financial criteria that define the profitable sharing of solutions and knowledge. These
criteria are applied to similarities that exist in software products or in software devel-
opment and maintenance activities. Information is collected and analyzed in the follow-
ing steps:

• characterize product variety to scope the different products for which
assets will be built

• screen patterns identified in product composition or production for their
potential for economies of scope

• choose assets for these patterns that are usable by application engineers
and reduce current costs

• evaluate the assets as a portfolio to diversify risk and optimize
economies

This chapter is divided into sections, and each section covers one of the above steps.

Under ideal conditions, a team composed of professionals from marketing, engineer-
ing, management, and finance would work together to compile the information needed
to construct an asset portfolio. Different members would generate and supply informa-
tion germane to their field. Marketing provides information on the variety of products
and how they differ. Engineering identifies similarities in these products that, as assets,
will eliminate or reduce the work of application engineers. Economies of scope come
from closely coordinating software assets with the products planned in the future.

3.1 Characterize Product Variety

The objective of this step is to compile the following:

• anticipated products to be built over the next 3 years

• critical product attributes that drive sales

• likelihood of these products being sold, given economic conditions and
company strategy

In this step, the team reaches consensus on the scope of products to be "mined" for sim-
ilarities by engineering.

CMU/SEI-96-TR-010 21

Chapter 3 Construct Asset Portfolio

Marketing forecasts typically include the products to be sold, data on the gross margin
and the dollar profit, and projections of revenue and market share. From this forecast,
the team defines the product variety (the vector of products) for identifying software
assets and calculating economies of scope.

This product variety establishes the changes in product attributes - differences in indi-
vidual products - that must be accommodated by assets. It determines the scope for
modeling and delimits the variation in any similarities identified. In addition, the criti-
cal attributes define engineering priorities.

Pedestal Systems Product Line

In the following chapters, we will introduce concepts and then apply them to a product
line of pedestal systems. A pedestal system is an electro-mechanical system that moves
detection devices and weapons as they track moving airborne objects (see Figure 3-1).

Figure 3-1: Pedestal with Optical Devices

The detection devices are normally mounted on a platform that pivots up and down
while the entire pedestal moves left or right. Pedestal systems are delivered to many
types of customers. Similar to most industrial product markets, the customers are iden-
tified by the types of systems they buy. Our hypothetical product line consists of four
segments:

1. Air Traffic Control systems including mounts for en route radars and
airport surveillance radars

2. Object Tracking systems for tracking ordinance at test ranges

3. Stationary-platform Point Defense (Stationary PD) systems such as
surface-to-air missiles

4. Movable-platform Point Defense (movable PD) systems such as
anti-aircraft guns on ships.

Photograph courtesy of Contraves, Inc. 620 Epsilon Drive, Pittsburgh, PA 15238.

22 CMU/SEI-96-TR-010

3.1 Characterize Product Variety

Figure 3-2 shows the variety of products planned over the next three years under rosy
economic conditions. Twenty-five products are anticipated, with movable point de-
fense pedestals for the Navy accounting for more than half of total sales. Sales targets
and expected revenue are not shown.

Air Traffic
Control

Object Tracking
Stationary

Point
Defense

Movable Point
Defense

en route test sites surveillance missiles gunnery missiles

4 2 2 3 10 4

Figure 3-2: Rosy Market Forecast

Figure 3-3 shows the products forecasted under dismal economic conditions.

Air Traffic
Control

Object
Tracking

Movable Point
Defense

3 2 2 3

Figure 3-3: Dismal Market Forecast

The likelihood of either scenario occurring appears to be 50%.

There is a lot of uncertainty in a marketing forecast. To reach consensus on product va-
riety, the team chooses to have engineering look for similarities given the full variety
in the rosy scenario, and to begin with the products identified in the dismal scenario.
They also decide to estimate and calculate the economies of scope for each scenario
based on what engineering identifies.

Figure 3-4 shows some of the key features that differentiate products in the hypothetical
product line. First, the payload mounted on pedestals varies from product to product. A
pedestal may support any or a combination of the following detection devices: optical,
video, laser, electronic warfare (EW), forward-looking infrared (FLIR), and radar.

The agility of the objects tracked by the pedestals also varies. For example, civilian air-
craft have a less volatile flight profile than do military aircraft, which is why agility is
not as an important sales point for air traffic control customers as it is for military ones.

These features affect how the software behaves. For example, gunnery systems have vi-
bration that must be compensated for in pedestal tracking algorithms. The critical ones
are shared with engineering.

CMU/SEI-96-TR-010 23

Chapter 3 Construct Asset Portfolio

~\Segments

Attributes\

Air Traffic
Control

Object
Tracking

Stationary
PD

Movable
PD

payload
diversity radar all six radar

radar /
EW /
optical (

target
agility low high high high

platform
stabilization no no no yes |

Figure 3-4: Attribute/Segment Matrix

3.2 Screen Patterns

Products in a product line have many similarities that can be leveraged to reduce the
amount of work in software development and maintenance. These similarities manifest
themselves as patterns, either as partial solutions that are replicated from product to
product (such as an algorithm or a set of operations), or as knowledge that is reapplied
in building each product (such as requirements or test data).

Patterns are readily identified or synthesized through modeling the software. Using a
software analysis or design method, the team develops a first-pass description of the
software system that is common to the scope of products established in the previous
step. This description helps the team infer the product-specific knowledge, processes,
and partial solutions that may be similar in the product line.

The team (or engineering) need not fully flesh out the model to identify candidate pat-
terns. Often a block diagram and an analysis of the variability of the blocks in the dia-
gram is sufficient. The objective is to identify the possibilities for economies of scope
and the technical uncertainties that need to be resolved. For example, a system descrip-
tion may indicate a common set of services or a common user interface.

Conducting a high-level domain analysis is recommended. Most modeling methods are
designed to describe the software system for one product. Domain analysis, on the other
hand, is a process that develops a description of the entities, operations, and relation-
ships in a real-world system that is implemented, at least in part, in a family of software

The American Heritage Dictionary defines a pattern as "a consistent, characteristic form, style, or method."
This is the spirit in which the term is used in this report. Our use of the word expands the concept, yet is con-
sistent with that described in some object-oriented literature. Gamma concentrates on patterns that solve de-
sign problems [Gamma 94], while we concentrate on patterns that exist in the composition of multiple prod-
ucts or in the production of multiple products. The objective is to find similarities that reduce engineering
tasks and decisions.

24 CMU/SEI-96-TR-010

3.2 Screen Patterns

products. The description documents the variations in the system that may occur over
time and across these products. To identify patterns, we look for cohesive clusters
whose variation is well-defined and well-contained.

The view chosen in software modeling implicitly determines the similarities that
emerge. Different views emphasize different properties and structures in a software de-
scription. Details captured in some views are ignored in others. For example, a view
that focuses on the runtime behavior of the software will reveal patterns in the coordi-
nation and communication among executing processes. A view that describes the user
interactions with the system may suggest common patterns (motifs) for software oper-
ation. As the view determines the content of the description, it circumscribes the pat-
terns that may be identified.

Typical views that are useful include the following [Clements 96]:

• the conceptual (logical) view: This view describes the interaction of
entities in the problem domain. This view focuses on requirements - key
application functions - and suppresses implementation details.

• the modular (development) view: This view describes the static
organization of the software: the software components and their
connections.

The view chosen in modeling also indirectly dictates the expertise that will be required
of application engineers that use the assets. For example, engineers that develop soft-
ware for household appliances typically express the behavior of these appliances using
system state tables. A view that describes the system resources (CPUs, networks, etc.)
may identify reusable parts, but not ones these engineers could modify without retrain-
ing. You want to choose a view that is compatible with the skills and domain expertise
of application engineers.

Design and scoping decisions are often made while modeling, and this also creates or
limits recognizable patterns.

Criteria

To maximize the potential for economies of scope, engineers need to be cognizant of
the following criteria while modeling a software system to synthesize patterns: scope,
span, stability, and encapsulation.

Scope refers to the ubiquity of a pattern - its existence in the variety of products to be
built.

Span refers to the breadth of the system included in a pattern. It is the portion of a sys-
tem description covered by a pattern. For example, in the description of common sys-
tem services, the span of a pattern can vary from a small routine that provides one
service, to a runtime kernel that provides multiple services.

CMU/SEI-96-TR-010 25

Chapter 3 Construct Asset Portfolio

Stability refers to the soundness of a pattern - the extent to which it is cohesive and well-
defined across product variety.

Encapsulation refers to the extent to which changes are contained within the pattern and
do not affect other parts of the description.

These criteria can also be applied to the knowledge or processes that are reused from
product to product, such as methods or common mathematical transforms.

Kiviat Diagrams

Patterns can be compared against these criteria using Kiviat diagrams. Kiviat diagrams
are graphs with an axis for each criterion. The axes share a common origin. A diagram
is made for each pattern, and values are plotted on each axis. In general, the greater the
area of the polygon created by line segments connecting the values on the different ax-
es, the more likely the pattern will create economies of scope. These diagrams greatly
help teams screen patterns.

To construct kiviat diagrams, you have to define a scale for each criterion in terms of
the description you used for modeling. You can use Figure 3-5 as a guide. This table
creates a scale from 0 to 1 for each criterion, where 1 is the most desirable.

Dimension Description Benefit Operational Definition

Scope Proportion of product
variety having pattern

Pattern is used in
all products.

Number of products having pat-
tern divided by total number of

products

Span Proportion of system
description encapsu-

lated in pattern

Greater amount of
work is avoided.

Number of items in pattern
divided by total number of items

in description

Stability Description of pattern
is well-defined and

cohesive. Description
does not vary across

products.

Complexity is
reduced and

change is
bounded.

Number of items in pattern less
conditional items, that quantity

divided by total number of items
in pattern

Encapsulation Changes are local to
pattern, and not prop-
agated outside of pat-

tern.

Costly change
dependencies are

minimized.

Number of changes encapsu-
lated in pattern divided by total
number of possible changes to

pattern

Figure 3-5: Pattern Criteria

The goal is to identify a set of patterns that together have the largest scope and span and
whose variation is below the threshold that can be accommodated by the expertise of
application engineers and by the differentiability of the assets. Engineers will want to
identify the level of 'sameness' whereby differences across product variety are manage-
able and cheaper to implement using assets than without assets.

26 CMU/SEI-96-TR-010

3.2 Screen Patterns

Pedestal Patterns

For the pedestal product line, the team applies an object-oriented analysis technique to
identify patterns. Two scenarios describing the operations of two products are devel-
oped and scripted in a notation.

The first product is a manned pedestal on a moving platform with an infrared detection
device. The operator visually acquires the target using a guide scope, and then activates
the software to start tracking using infrared images. The product is used to monitor de-
livery of naval ordinance.

The second product is an unmanned pedestal on a stationary platform with electronic
warfare (EW) and video detection devices. The product is used to monitor activity
along a national border: The electronic warfare device is used to track airborne objects,
while the video is used to record data about the object. The system is initially rotating
to acquire objects. Once an object is detected via an EW device, the system starts track-
ing based on EW and keeps the video recorder aimed at the object. Using EW tech-
niques for tracking allows objects to be covertly acquired in all weather conditions at a
greater distances than possible using optical devices.

The scripts are combined in a database, and common objects are identified. The team
decides on two patterns: a target tracker and a servo movement controller.

The target tracker estimates the position of a target based on its previous position, com-
pares this calculated target position with image data, and then records the actual posi-
tion of the located target for the next iteration. The changes to the target tracker depend
on where the payloads are mounted on the pedestal, the agility of the target, and the
presence of electronic warfare information.

The servo movement controller calculates and sends instructions to the hardware that
controls pedestal movement. Changes to the controller depend on the payload and need-
ed tracking accuracy.

Figure 3-6 shows the Kiviat diagram for the two pedestal patterns.
stability Stability

Scope Span Scope Span

Encapsulation Encapsulation

TARGET TRACKER SERVO MOVEMENT CONTROLLER

Figure 3-6: Kiviat Diagrams for Pedestal Patterns

CMU/SEI-96-TR-010
27

Chapter 3 Construct Asset Portfolio

3.3 Select Assets

Next, the team proposes software assets for the patterns. For any given pattern, the team
has several choices. For example, a set of functional requirements may be realized as a
suite of test cases or as a compiler for a domain-specific language, or as a framework.
The choice of assets depends on the activities that contribute the most to the costs of
software development and maintenance, on the flexibility required to accommodate the
variety of products, and on the skill set of application engineers.

Activity Costs
A recurring activity that incurs the greatest proportion of costs is a good target for cost
reduction via software assets. Maintenance data is an appropriate source for identifying
those activities. In both application engineering and maintenance, activities range from
making simple upgrades to extending functionality to meet new needs. In both process-
es engineers are working with preexisting development artifacts. Application engi-
neering differs in that the change activity is planned. Engineers upgrade or build new
products using assets that accommodate changes in product attributes.

Schach decomposed software maintenance into seven repeated activities and reported
the relative costs of each activity [Schach 94]. The most costly maintenance activities
are shown in Figure 3-7. They are ordered by impact on total costs. The other

Maintenance activities

Comprehension Implementation Integration

Figure 3-7: Pareto Graph of Activity Costs

four activities, requirements, specification, design, and revalidation, account for the re-
maining 20% of costs. According to Schach's data you would want to build assets, such
as guidebooks, that reduce the time required for comprehension.

Greater economies will also occur if the asset replaces difficult work; for example, re-
curring patterns that are complex to redevelop.

28
CMU/SEI-96-TR-010

3.3 Select Assets

l.

Asset Flexibility

Asset flexibility can be defined as the number of product attributes and their values that
an asset can accommodate for a given product variety.

Some assets are more flexible than others. For example, a generic module can support
only a few product attribute changes, and only when the interaction among them is sim-
ple, whereas a specification language can support a greater number of attribute changes
whose interactions are complex.

Depending on your objectives, you choose to constrain or augment the flexibility re-
quired of an asset. In Figure 3-8, the areas circumscribed by the lines show two possible
flexibility requirements for a candidate asset. To account for uncertainty in a variety
of products, you may want an asset that is more flexible: one that accommodates all at-
tributes to point 1 (areas A and B). To reduce complexity, you may choose to constrain
the flexibility to accommodate only the most frequent attribute changes (point 2).

Number
of products

. attribute #1 ' ' attribute #20
i

point 2

Attributes sorted by frequency

Figure 3-8: Flexibility

Robustness is a measure of the extent to which varying product attributes are supported
by an asset, either by modification (if a component or tool) or by explanation (if an in-
formation artifact). If the product attributes that must change do not affect the asset,
then it is robust: It is independent of the changes. If the asset is designed to accommo-
date all required changes, then the asset is also robust. If the asset does not accommo-
date a portion of attribute variety, then robustness falls quickly (Figure3-9). It becomes
useless (if an information artifact) or expensive to modify (if a component or a tool). If
an engineer must change more than 20% of a component, it is more cost effective to
rebuild the module than to adapt it.1

Boehm reports that the cost of modifying 20% of a code component is equivalent to an estimated 90% of the
cost to develop the component from scratch [Mili 95]. Thus, for reuse to be cost effective, changes must be
pre-planned.

CMU/SEI-96-TR-010 29

Chapter 3 Construct Asset Portfolio

high

Changes in
product attributes

low

independence covariance = 1

Changes in asset

Figure 3-9: Robustness

Skill

Skill level refers to the kind and depth of expertise required to use an asset in applica-
tion engineering.

Different assets require the use of different application engineering skills. In choosing
assets, particularly ones that automate decisions, you have to make a conscious tradeoff
about where system, technical, and product knowledge reside — in the asset or in the
skills of application engineers.

You target the skill level required to use the asset according to the domain knowledge
held by application engineers. For example, if your system engineers typically specify
application behavior using state machines, then an application generator that accepts
state transitions as input would be an appropriate asset to consider for a pattern.

The level of skill is also related to the complexity of an asset: that is, the amount of in-
formation an engineer needs and number of decisions that the engineer has to make to
create an individual product. Assets that accommodate a greater variety of attribute val-
ues are typically more complex. Thus potential economies gained from an asset with
high span and flexibility may be offset by the application engineering costs to tailor the
asset. Using the asset may require more skills and time than is economically feasible.

Pedestal Assets

Currently, the effort to develop the equivalent functionality averages 21 person-weeks
for the target tracker and 17 person-weeks for the servo movement calculator patterns.
Since cost data shows that the time to comprehend and modify algorithms in the target
tracker is a major cost in product modification, Figure 3-10 shows the proposals the
team made for the target tracker and servo movement controller patterns.

30 CMU/SEI-96-TR-010

3.3 Select Assets

\^Asset

Pattem^^
1 2 3

Target
tracker

Generic module:

capabilities of tar-

get passed as pa-

rameters to same

algorithm

Notebook contain-
ing state estimator

and coordinate

transformation

math models

Class of objects:

different algo- /

rithms, same /

Servo
movement
controller

Standard module:

same precision
and torque, same

motor commands

Guidebook dis-

cussing precision,

torque, and control

capabilities of

mount

Application

Figure 3-10: Pattern/Asset Matrix

Selecting one of the three proposals shown in Figure 3-10 depends in part on the flexi-
bility required of the asset. If the variation in attributes is so uncertain and complex
that it cannot be represented in a software description, then a notebook or guidebook
may be the most appropriate asset. On the other hand, if the variation is well-understood
and limited, then a generic module may be sufficiently robust.

The team decides that implementing a class of objects (option 3) for the target tracker
would be the best choice. The company's engineers are well versed in C++, and engi-
neering feels the following design assumptions will reduce the variability to an accept-
able level:

• All devices will be mounted in one of three predefined stations on the
pedestal. The target tracker will be initialized with the coordinates of the
device's position.

• Electronic warfare changes will not be designed in an asset. Because the
customizations to the comparison algorithms in the target locator are
unique, they will be developed by hand.

• One Kaiman filter form will be used for both high and low agility
targets.

The team decides to build a standard module (option 1) for the servo movement con-
troller for the following reasons:

• The servo movement controller is tightly coupled to the choice of
hardware because the hardware/software interface is complex.

• Only two hardware systems are used, one for heavy payloads and
another for light payloads. (Because of costs, the heavy duty servomotor
is not used with light payloads.)

CMU/SEI-96-TR-010 31

Chapter 3 Construct Asset Portfolio

Because the number of pedestals with heavy payloads is far greater than the number
with light payloads, the module would be designed for reuse in heavy payload systems.

Figures 3-11 and 3-12 summarize the scope of the two assets given the engineering as-
sertions made by the team and the forecasts made by marketing. Each figure shows the
number of different pedestal systems that will use each asset. In the columns, the sys-
tems are grouped by market segment. Each segment is further subdivided by important
attributes that affect asset use. For example, note that the servo movement controller
asset is not used in pedestals with optical devices: Optical devices are light payloads.
Also observe that the team assumes that EW additions or changes will be made to the
target tracker asset; the target tracker will not be redeveloped from scratch.

Air
Traffic
Control

Object Tracking
Stationary

Point
Defense

Movable Point Defense

en route test sites surveillance missiles gunnery missiles

radar
optical &

light
EW & radar radar optical

& light
EW&

manned
radar

Target
tracker

4 2 2 3 4 6 4

Servo 4 0 2 3 0 6 4

Figure 3-11: Asset/Product Matrix for Rosy Market

Air
Traffic
Control

Object
Tracking

Movable Point
Defense

en route test sites gunnery

radar optical &
light

optical
& light

EW&
manned

Target
tracker

3 2 2 3

Servo 3 0 0 3

Figure 3-12: Asset/Product Matrix for Dismal Market

32 CMU/SEI-96-TR-010

3.4 Evaluate Portfolio

3.4 Evaluate Portfolio

The following criteria can be used to evaluate candidate assets for the portfolio (see Fig-
ure 3-13). All but the last two have been introduced and used in the process up to now.
Additional criteria can be defined.

Criteria Operational Definition

Span % of system covered by the asset

Scope % of potential products using asset (asset/product matrix)

Impact % of total software effort replaced by asset

Robustness covariance of product attributes to asset flexibility

Skill kind and depth of expertise required to use asset

Development
Time

calendar time required to build asset

Development
Costs

non-recurring costs to build asset

Figure 3-13: Portfolio Criteria

These criteria are used to design a combination of assets that, as a group, optimize the
potential for achieving economies of scope. When you choose an asset, you make a
tradeoff between two or more factors. For example, you may have to reduce the scope
of a candidate asset to increase its robustness.

In constructing the portfolio, the goal is to diversify these tradeoffs and in the aggregate,
achieve the strategy desired by the team. For example, the team may want to diversify
market risk and construct a portfolio that maximizes the number of products that use
the assets. Or instead, the team may want to diversify the application engineering activ-
ities that use assets and construct a portfolio that varies the kinds of assets that are de-
veloped. Or they may wish to maximize the number of assets for a subset of the product
variety.

Simple graphs help teams analyze the candidate assets. Figure 3-14 show 3 graphs that
compare the properties of two assets. The size of the circle represents the relative size
of the budget required to build the asset. The number in the circle refers to a particular
candidate.

For example, an asset with a larger span has greater potential to produce savings than
an asset with a smaller span. However, as Graph (a) in Figure 3-14 shows, an asset with
a large span may be used in fewer planned products. Thus the total savings may not be
significant.

As Graph (b) shows, you may want application engineers with higher skills than origi-
nally planned so that you can use them to build more products.

CMU/SEI-96-TR-010 33

Chapter 3 Construct Asset Portfolio

(a) (b)
Size of budget

high

Variation
in scope
(std. dev.)

low

(c)

high F©~
1

Expected j
scope j

low [

1
i

©
j

high

Span

high) x(j)
i |

Expected! |
scope j /-N| 0

low j 1

I

1 ©

1 ©
low low

Skill

high 0 6 12 18 24

Development time
in months

Figure 3-14: Portfolio Comparisons

Because of uncertainty in product variety, the scope of an asset can vary. For two con-
trasting market forecasts, one asset may be used 20 times or only 5 times, whereas an-
other asset may be used 10 times in both cases (Graph (c) in Figure 3-14). Is that risk
acceptable?

Although now we are constructing the portfolio using predominantly non-financial cri-
teria, after modeling the investment, we can always come back to this step and recon-
sider its composition as part of a sensitivity analysis. In sensitivity analysis, you test
how much the investment is influenced by key decisions you made in constructing the
portfolio (e.g., the choice of assets, the scope of products).

34 CMU/SEI-96-TR-010

4.1 Net Present Value

Chapter 4 Model Investment

This chapter introduces techniques for modeling the investment in an asset portfolio so
managers can decide whether or not to invest immediately. This chapter introduces the
concept of net present value and how it is adapted for modeling investment in software
assets. Decision trees are introduced to the model the different risks, and then the in-
vestment in pedestal assets is analyzed.

4.1 Net Present Value

The Net Present Value (NPV) formula is most often used to model and evaluate an in-
vestment. You model the decision to invest in a portfolio of assets as a project with cash
outflows and inflows occurring over a period of time. Cash outflows are typically the
expenses required to acquire an asset. Cash inflows include the cost savings and profits
resulting from using the asset.

Equation 2 shows the generic form of this formula [Brealey 91]. The opportunity cost
of capital, r, represents the return expected from investing in securities that have the
same risk as the project. The net cash flow for a given time period is discounted to to-
day's dollars by this opportunity cost. This discounted cash flow is the present value of
the investment.

" C—C
(2) NPV = y _i^£

, = 0(1+0'

Where:

C- = cash inflows during period t

C0 = cash outflows for period t

r = opportunity cost of capital

t = time period of constant duration, typically one year

n = number of periods in planning horizon

However, this formula does not account for uncertain events that may happen during
the investment and for managers' flexibility to respond to them. It assumes that man-
agers are passive, and that they do not have the option to make intermediate decisions

CMU/SEI-96-TR-010 35

Chapter 4 Model Investment

to continue, discontinue, or alter the investment. It also assumes that the investment risk
remains constant over the planning horizon, when actually risks change as managers
make decisions. (This formula was originally invented to evaluate the return on bonds.)

4.2 Uncertainty

An uncertainty is an event that can happen, but the probability of its occurrence is un-
known. A risk is an event whose occurrence has some known probability distribution.
Teams modeling an investment typically convert uncertainties to risks by assigning
probabilities to events. These probabilities are typically consensual, but subjective,
based on beliefs, experience, analogy, and incomplete information. Part of the mod-
eling exercise is to tease out events that can significantly affect the success of an invest-
ment, and then include them in the analysis of whether to proceed with an investment,
collect more information, or abandon the effort altogether.

There are two kinds of uncertainty: technical uncertainty and economic uncertainty
[Guimaräes 96]. Technical uncertainty refers to the unknowns involved in completing
an investment. Typical unknowns are the actual time and effort required to build an as-
set, whether the asset will perform as planned, or whether the asset will be adopted by
others. Technical uncertainty can only be resolved by undertaking the investment
project. The results (costs, performance, adoption) are only known once the investment
is completed [Dixit 94].

Economic uncertainty refers to the unexpected events beyond the direct control of the
organization, such as changes in short-term interest rates, an economic recession, and
government shutdowns. This uncertainty is exogenous to the decision process - the na-
tional economy influences your decision to build assets and not the other way around.
Technical uncertainty, on the other hand, is endogenous to the decision process. The de-
cisions you make and the resources you provide to complete an investment may reduce
or increase the uncertainty.

Thus, in the face of these uncertainties, management has several options:

• the option to make follow-on investments in a project

• the option to abandon the project

• the option to wait until favorable market conditions exist before
investing

These uncertainties and options are included in the investment model by building deci-
sion trees.

36 CMU/SEI-96-TR-010

4.3 Decision Tree

4.3 Decision Tree

Decision trees are used to model investments when uncertainty is involved. They orga-
nize the information relevant to making an investment decision.

A decision tree is constructed by dividing an investment into a series of steps or mile-
stones. Some milestones are management decision points: Managers have the choice to
continue, defer, switch, or abandon their investment in a portfolio of assets. Other mile-
stones represent probable outcomes from an investment decision. They reveal informa-
tion that managers use to make subsequent decisions. Milestones are modeled as a node
with one or more branches. Each branch represents a probable event that leads to an-
other decision or outcome. The terminal branches usually represent the benefits created
by the asset.

Decision trees describe the technical and economic uncertainties associated with cash
inflows and outflows. They are a convenient way to summarize the decisions and con-
sequences that affect cash flows.

Cash inflows are the reductions in costs or the increases in profits stemming from econ-
omies of scope. Cash inflows are the benefits that come from using an asset during a
time period

Cash outflows are the expenses paid to achieve the benefits of the investment. These
expenses include asset development costs and changes to an organization's infrastruc-
ture. Cash outflows often provide essential information for the next stage of investment.

The specific cash outflows to include in a model depend on the assets to be built. For
example, if the assets are software components, a software architecture must be devel-
oped to avoid component mismatches. The architecture partitions the system into com-
mon components, defines how these components interact, and specifies how the
components are assembled in a working system.

If the asset to be built is an architecture, an analysis of the enabling technologies and
requirements for products in the product line should be a prerequisite. The Software En-
gineering Laboratory (SEL) at the National Aeronautics and Space Administration's
Goddard Space Flight Center found it necessary to conduct a domain analysis to in-
crease the scope of systems covered by an architecture [Stark 93].

A deployment strategy is a plan of action for phasing in a portfolio of assets. The pro-
cess of developing and deploying a portfolio is divided into a sequence of steps that mit-
igate undesirable events (uncertainties) and capitalize on desirable ones. This sequence
of steps constitutes a deployment strategy. The strategy defines the management deci-
sion points in a decision tree.

Depending on the uncertainties involved in building and deploying assets, and ultimate-
ly in making the transition to a production system, different deployment strategies are
developed. For example, if organization adoption is uncertain, you may want to build

CMU/SEI-96-TR-010 37

Chapter 4 Model Investment

and deploy assets incrementally in a showcase project. Policies, plans, practices, and
reward measures would be developed by a change agent as part of the effort to integrate
the first asset in the project's process. Based on the success of this effort, subsequent
assets would be adopted with less expense. Training would be developed.

If the technology is uncertain, you may wish to pilot an asset in a demonstration project
before including it in a critical project. Perhaps before the asset is built, a team would
evolve the design over the course of two product deliveries. Not until demand for a line
of products begins to grow quickly do you build the asset.

4.4 Investment Decision

The uncertainties in the tree affect how you make the decision of whether to proceed
today with the investment. Investment decisions are defined by decision rules. For ex-
ample, when using the NPV formula given by Equation 1, the decision rule is as fol-
lows:

• if the NPV is positive, proceed with the investment

• if the NPV is negative, do not proceed.

However, because of uncertainties, this rule does not always hold. In the case of tech-
nical uncertainty, a negative NPV may still warrant immediate investment. Because the
calculation sums all possibilities of cash flows, it hides the value of the information
gained after the first step. To proceed with the investment, you only want to know if the
possibility of positive payoff is greater than the expense of the first step. Thus, the cal-
culation is made by pruning all downside branches in the tree, and you proceed if this
modified NPV calculation is positive [Dixit 94].

Technical uncertainty increases the willingness to invest by raising the expected value
of the investment and reducing the impact of the overall cost. We assume that a rational
manager will not proceed to the next step unless there is good news.

On the other hand, economic uncertainty makes it less attractive to invest now. An in-
vestment with a positive NPV may still be uneconomical if the variation and impact of
an event is sufficiently large. Although the uncertainty increases the value of the invest-
ment (greater profits are possible), it decreases the willingness to invest (the downside
loss is also greater). This variation creates a value in waiting for new information before
proceeding with the investment.

Economic uncertainty is modeled as a risk that affects investment outcomes and is usu-
ally added to the interest rate used to discount future cash flows to today's dollars. The
interest rate plus risk is called the discount rate. The discount rate is tied to the oppor-
tunity cost of using the cash outflows in another investment. If the investment is risk-
free (that is, the value of the investment is independent of changes in the economy) then
the discount rate equals the opportunity cost of investing in safe securities: for example,

38 CMU/SEI-96-TR-010

4.4 Investment Decision

the interest rate of three year Treasury Bills. However, if the outcome is dependent on
variation in the market, then it is appropriate to discount the cash flows to the opportu-
nity cost of capital for the organization. This is the risk premium added to the risk-free
interest rate that the stock market places on the organization's stock. The spread (vari-
ation) in the total return of the stock (growth in value plus dividend) over time reflects
investors' estimation of the prospective revenues of the company. If the investment is
a new area of business, then the discount rate should be based on the variation in return
of companies having the same risk as the investment [Brealey 91].

Because of this uncertainty, with a barely positive NPV, it is wise to test whether the
investment should be made now or should be postponed. You construct an alternative
deployment strategy, where the entire investment or part of the investment is deferred
for a period of time, and calculate its NPV. You should pursue the strategy for which
the NPV is greater.

Example

Figure 4-1l shows the tree for a two-step project with technical uncertainty. The second
step is an option because you may not undertake it.

S

m-
original

Where:

C = cost to build asset

S = savings from using assets (economies of scope)

q = likelihood of completion

Figure 4-1: Decision Tree with Technical Uncertainty

For simplicity, the figure and equations do not show how the variables are discounted by the opportunity cost
of capital. If the risks in developing the asset are different from those using the assets, the variable C would
be discounted using a different discount rate than 5.

CMU/SEI-96-TR-010 39

Chapter 4 Model Investment

The original cash spent on the asset creates an option to achieve economies of scope
[Myers 84]. At point A in Figure 4-1, you will know which branch is closest to reality.
If the asset is not completed, you will either exercise the option (step 2) to spend more
money or cut short your losses by discontinuing the project. You will base your deci-
sion on the estimated payback (S) at the time.

The decision is whether you should invest now knowing that there is a q probability of
obtaining S savings. Your investment decision is shown in Equation 3.

(3) NPVl = -C + qS + (\-q)0

The downside branch is pruned since we can abandon the investment if a second phase
of additional cost is required. This NPV is greater than the NPV that would be calculat-
ed using the traditional net present value calculation (See Equation 4).

(4) NPVA =-C + qS+(\-q)(- Cadditional + S)

Decision trees can become complex. However, the purpose of decision trees is to model
the links between the most important steps in a project; not to show the full range of
possibilities in cash flows. You identify the primary consequences of a series of invest-
ments. Then, assuming that you will minimize failure, you evaluate the investment.

4.5 Pedestal Asset Portfolio

In this section, we model the investment in a portfolio consisting of two pedestal assets.
We have established the variety of products planned to be built in the future, identified
the patterns common to this product set, and proposed assets that are technically viable.
With this information, we can develop a simple decision tree to calculate the value of
the investment.

Deployment Strategy

The deployment strategy for the hypothetical pedestal assets is simple.

Because the technology is well understood and projects currently coordinate and share
common work such as math modules, there is not much uncertainty in the projects
adopting two more components. However, pedestal systems are not currently built us-
ing a common architecture. This will have to be developed first.

Developing a software architecture requires a major cash outflow that precedes the ex-
pense of developing assets. This architecture is necessary because it defines the overall
structure of the software, and thus specifies how specific products will be composed us-
ing the components. Key decisions affecting component design would also be made.
High-level design issues such as the flow of control, the storage and transportation of
data, and the design of hardware interfaces would be resolved.

40 CMU/SEI-96-TR-010

4.5 Pedestal Asset Portfolio

Also, economic conditions may have changed after the architecture is built. Manage-
ment may wish to plan for different actions depending on different market scenarios.

Decision Tree

Based on our pedestal deployment strategy, the general decision tree for analyzing the
asset portfolio is shown in Figure 4-2. Depending on assumptions made in estimating,
different values can be substituted for the variables /, qA, qB, Shigh, S,ow, A, and B.

architecture
ffl (*

1
~4A

portfolio

'high

Where:

I architecture = investment expense for architecture

A ,B = uncertainties corresponding to points in time

qA = likelihood that architecture meets requirements

I portfolio = investment expense for asset portfolio

qB - likelihood that market is good

Shi h = economies of scope from components given a good market

Siow = economies of scope from components given a bad market

Figure 4-2: Decision Tree for Pedestal Asset Portfolio

At step 2, you have the option to invest in the portfolio or stop the project. The decision
is based on an evaluation of the architecture and the market. If the architecture meets
requirements, you will consider building the assets. If the architecture fails to meet re-
quirements, (e.g., establishing standard interfaces for the planned components) you will
abandon the project and the architecture will have little to no salvage value.1 Before al-

'• "Salvage value" is the term used in finance to describe the benefits that can be recovered when the project is
"scuttled." Although knowledge was gained by building an architecture, the investment is a sunk cost. So, in
this scenario, the "salvage value" is zero.

CMU/SEI-96-TR-010 41

Chapter 4 Model Investment

locating resources to build the assets, you will also consider the market. If the market
has weakened significantly, you may want to postpone investing in the portfolio, and
use the architecture on the few products that are developed.

All cash flows in Figure 4-2 are discounted to dollars at time t, where t is either the time
at step 2 or step 1. Discounting cash flows at a continuously compounded rate r for n
years involves multiplying the cash flow by e~rn . Since the technical risk of building
the architecture is modeled in the tree, and is independent of economic uncertainty, we
will discount the cash outflows by the "risk-free" interest rate.

We assume that the risk of return for the pedestal product line is the same as the risk of
return for today' s products. The asset portfolio diversifies downside technical risk, and
the advantage of time-to-market in the defense market is unclear. Also, since the risk of
return for the pedestal product line is the same in either market scenario, the cash in-
flows will be discounted at the company's current opportunity cost of capital.

Although the cash savings (or cost avoidance) from economies of scope S begin when
the first product uses the assets (just after milestone B), the savings are discounted to
today's dollars, assuming they are only realized at the end of the period included in the
economies of scope estimation. Since the economies depend on all products being de-
veloped, this assumption is reasonable.1 But because cash inflows in year three, for ex-
ample, are worth less in today's dollars than cash inflows occurring in year two, this
assumption errs in making the assets less valuable than they really are.

Cash Outflows

The decision tree shows two major sources of cash outflows: the expenses of building
an architecture and two assets. Based on multi-year company experience and the de-
tailed modeling conducted by the team, it is estimated that the pedestal software archi-
tecture would take four people six months, or about 96 person-weeks, to develop and
test. Pedestal systems have not been that large in size, and being an embedded feedback
control system whose basic functionality is constant across products, a cyclic executive
architectural style has worked well.

We estimate the effort to build the target tracker and servo movement controller assets
will take 2.25 times the effort to implement the equivalent functionality in a current
product. Considerable time will be spent eliciting requirements from all stakeholders
and documenting assumptions and mathematical derivations embodied in the assets.

l. Also, it is very difficult to predict with any level of confidence when each product is sold after milestone B,
much less to predict the changes that would be made in each product. This is another reason why a cost func-
tion is difficult to construct.

The effort multiplier recommended for estimating the budget of a reusable component varies. Mili notes that
multipliers range from 1.5 to more than 2 [Mili 95]. Boehm reports that in AT&T's experience, a factor of
2.25 is appropriate. Because greater reliability is needed, Boehm recommends multipliers in this range [Boe-
hm 95].

42 CMU/SEI-96-TR-010

4.5 Pedestal Asset Portfolio

Currently, the effort to develop the equivalent functionality averages 21 person-weeks
for the target tracker and 17 person-weeks for the servo. Thus, the investment expense
for the target tracker and the servo movement calculator assets are 47 and 38 person-
weeks, respectively. The assets will be developed over six months.

Cash Inflows

Cash inflows are the savings from economies of scope. To estimate the economies of
scope for the pedestal assets, the following must first be determined:

• the average recurring effort to replicate the tracker and servo functions
using the current process

• the average recurring effort to use the assets

Then for each market scenario, using the asset/product matrix to identify which prod-
ucts will be built using the assets, the economies of scope are calculated.

The average recurring effort for replicating the functionality of the target tracker and
the servo movement controller in a new pedestal system is respectively 21 and 17 per-
son-weeks. The effort requires senior engineers averaging an hourly rate of $37 per
hour.

A learning curve coefficient could be added to these estimates to improve accuracy.
With each pedestal system, engineers learn more about building products in the product
line. Consequently, less effort is needed to produce each subsequent system. Over 3
years and 18 products, the current process cost may decrease significantly. To account
for this learning, effort estimates can be multiplied by a coefficient that decreases in
value with each product development.

The recurring effort of using the target tracker asset in application engineering depends
on the modifications that would be made from product to product. Based on the design
assertions made in the previous chapter, Figure 4-3 gives low and high effort estimates
for an abstract class designed to accommodate device changes. For non-electronic war-

Non - EW
tracking devices

EW tracking
devices

Minor changes 1.25 1.75

Major changes 3.5 8.5

Average 2.4 5.1

Figure 4-3: Estimated Effort to Use Target Tracker Asset (in Person-Weeks)

fare devices, recurring effort for minor changes totals 1.25 person weeks. For major
changes,1 the recurring effort equals 3.5 person-weeks. For electronic warfare (EW) de-

CMU/SEI-96-TR-010 43

Chapter 4 Model Investment

vices, recurring effort totals 1.75 person-weeks for minor changes, and 8.5 person-
weeks for major changes. The averages are shown in the figure.

The estimated recurring effort for using the servo module ranges from 1 to 3 person-
weeks, for an average of 1.5 weeks.

Because the assets require fewer skills to modify, fewer senior engineers can be as-
signed the task. The hourly expense therefore, is anticipated to average $30 per hour.

Because an architecture and assets may suffer from entropy, these may need to be mod-
ified over time. Over time, changes in the assets tend to increase complexity and reduce
effectiveness; more effort will be required to use the assets. Accordingly, recurring ef-
fort estimates may be multiplied by a coefficient that increases slightly with each prod-
uct development.

Asset/product matrices are used to determine which of the above effort estimates
should be used to calculate the economies of scope. For some of the object tracking
and movable point defense products, the effort estimate for EW tracking devices is used
for the target tracking asset. The servo movement controller asset is not used in pedes-
tals with optical devices.

By totaling the difference in cost to build each product with and without assets,1 we ar-
rive at the economies of scope. Figure 4-4 and 4-5 summarize the figures used to cal-
culate economies of scope for rosy and dismal market forecasts, respectively. Because
assets will not be available until the second year, only the number of products forecast-
ed for years two and three are used.

Number of
products, V

Current effort
(in person

weeks)

Hourly
rate

Effort with
assets

(in person
weeks)

Hourly
rate

Target tracker 12 21 37 2.4 30

Target tracker,
EW devices

6 21 37 5.1 30

Servo controller 16 17 37 1.5 30

Figure 4-4: Recurring Effort in Rosy Market

Major changes represent the upper limits of changes for which using the asset is technically more feasible
than re-implementing the same functionality using the current process. In our example, these changes are an-
ticipated, but typically require some rewriting of code.

See Equation 1 in Chapter 2.

44 CMU/SEI-96-TR-010

4.5 Pedestal Asset Portfolio

Number of
products, V

Current effort
(in person

weeks)

Hourly
rate

Effort with
assets

(in person
weeks)

Hourly
rate

Target tracker 4 21 37 2.4 30

Target tracker,
EW devices

2 21 37 5.1 30

Servo controller 3 17 37 1.5 30

Figure 4-5: Recurring Effort in Dismal Market

The economies of scope for the good market scenario rounded to the nearest thousand
dollars equal $862,000. For the bad market scenario, the economies of scope equal
$233,000.

Investment Decision

Once the cash inflows and outflows are established, you are ready to determine the in-
vestment value of the asset portfolio for two market scenarios. Substituting the cash
flow estimates and dates discussed above for the terms in Figure 4-2 produces the de-
cision tree shown in Figure 4-6. Domain engineering expenses, that is, expenses to
build the architecture and assets, were calculated using an average hourly rate of $38.
All numbers have been rounded to the nearest thousand.

economies
of scope

architecture

$-146,000
m w

asset
portfolio

$-129,000

$862,000

now 1 year 3 years

Figure 4-6: Decision Tree with Numbers

CMU/SEI-96-TR-010 45

Chapter 4 Model Investment

To determine whether to invest today, you start at the right side of the tree and work
backwards to step 1 on the left. This means first determining what you would do at step
2. The net expected value at step 2 is shown in equation 5. The opportunity cost of
capital for the company is 18% (r=.18), and the duration (n) for economies of scope is
two years (years 2 and 3).

(5) NPVslep2 = -lportfolio + q(Shighe-rn) + (1 - q){Slowf
rn)

Substituting these values in Equation 5 gives the result shown in Equation 6.

(6) NPVstep2 = -129000 +0.5(862000 •e"°'18(3_1)) +0.5(233000 •e~°18(3_1))

NPVstep2= 252578

Because the NPV of the upper branch following step 2 is large, the decision to wait is
not followed. Deferring an investment is more appropriate when uncertainty is great
and the immediate NPV is small. In this case, waiting one year would probably incur
an opportunity cost close to half of the NPV of $252,578. The components would not
be available for the products built in year 2.

The expected net present value at step 1 is shown in Equation 7. The NPV at step 2 rep-
resents the present value of expected benefits for the upper branch at milestone A. Since
point A is 6 months from today, the number is discounted at the risk-free rate of 7%.1

l.

2.

(7) NPVsteP\ = -146000 + 0.8(252578 • e 007(5 0)1 +0.2(0)

KPVstePx= 49000

Thus the architecture is worth $49,000 solely from the economies of scope of two com-
ponents. Investing today gives you the option to reduce costs by a weighted average
of $252,000. And adding another component would probably increase the benefits sig-
nificantly.

Recall that the technical risk of developing the architecture is modeled in the tree, and the economic uncer-
tainty related to the economies of scope has already been included the NPV at step 2.

Note that this value does not include any net benefits (or costs) from using the architecture in other software
development and maintenance activities. Cash flows from sources other than component use need to be in-
cluded, such as the reduction in the time to isolate changes [Stark 93]; in this example they are not. Further
research is needed to model the full value of a software architecture.

Also, this approach has limitations. It values an asset primarily for its contribution to economies in produc-
tion: how architectural properties, such as information security or system performance, affect revenues or
market share are not measured by economies of scope.

46 CMU/SEI-96-TR-010

4.5 Pedestal Asset Portfolio

The formula and the asset product matrix facilitates sensitivity analysis. In sensitivity
analysis, you test how much the NPV will change if one variable is changed. For exam-
ple, if you relaxed the constraints of an asset so it applied to a greater variety of prod-
ucts, how would the economies of scope change? If the bad market scenario was not as
pessimistic, how much would it change the investment decision? What if the hourly ex-
penses for application engineers were greater?

This model assumes that the risk associated with economies of scope is the same as the
today's risk of return on the company's products. But, because of advantages in time-
to-market, perhaps the risk would decrease: The uncertainty may not be entirely inde-
pendent of asset portfolio. Also, the spread in the market forecast may be greater or less
and it may vary during the two year period. Effort could be spent breaking the products
out by time period and modeling the change in risk over time.

CMU/SEI-96-TR-010 47

Chapter 4 Model Investment

48 CMU/SEI-96-TR-010

5.1 Product Strategy

Chapter 5 Summary

5.1 Product Strategy

A product strategy describes how a company plans to evolve its product lines over time.
It typically describes the customer segments targeted by the company, the products that
may be built, including their key differentiating attributes, and the current and expected
revenue and market share for each product.

Rather than plan at the tactical level, a product strategy expands the product horizon to
multiple years. Instead of thinking about the product to be delivered in 18 months while
mired in the details of trying to get the current product out the door, managers consider
the variety of products that may improve future market position. Treating those prod-
ucts as if they were to be developed jointly - all at once using assets - managers deter-
mine the economies of scope.

This kind of planning compels engineers to identify where their designs must be flexi-
ble. It better prepares the organization for shifts in the market. A capability to build
products simultaneously is a competitive advantage. Extending the design space from
one product to a variety of products increases the chances for rapid delivery and allows
for technology growth.

5.2 Approach

The investment analysis approach described in this report identifies assets that maxi-
mize economies of scope for a product line. It follows these key steps:

1. Construct an asset portfolio:

a. Establish the variety of products planned for a product line
to establish scope and key product differences. This
information usually comes from marketing.

Screen patterns identified in the composition or development
of products scoped in step 1. These patterns are identified by
engineering, usually by modeling the software system. The
patterns are evaluated against criteria that affect economies
of scope.

CMU/SEI-96-TR-010 49

Chapter 5 Summary

c. Choose assets that fit the patterns screened in the previous
step. Current cost drivers, skills, and desired flexibility are
considered in the selection.

d. Evaluate portfolio of assets to optimize properties such as
budget, scope and impact on current process. The investment
team reasons about the results and makes adjustments.

Model the investment. This includes defining a deployment strategy
to manage uncertainties, and estimating cash inflows and outflows
for the portfolio.

Product
attributes

Market segments/
common missions

Product line R

Candidate
assets

Products

r r' r" f s

c>
V I

i

w • /• •
X ^•1- • my

y • ^

z • i\
Asset portfolio R

0

C: infrastructure

\J-

High economies
of scope for R

Low economies
of scope for R

Figure 5-1: Summary of Approach

Figure 5-1 shows a sequence of graphical representations used in the approach. By un-
derstanding the product attributes that differentiate products in product line R, assets
are proposed that economically accommodate changes to these attributes. A subset that
optimizes the non-financial factors affecting economies of scope is included in a port-
folio. Economies of scope are then calculated for the portfolio. A decision tree is used
to determine the investment value of the portfolio.

50 CMU/SEI-96-TR-010

5.3 Optimization

5.3 Optimization

The goal of the approach is to define a product strategy such that assets and an applica-
tion engineering process can be economically developed and used for the variety of
products that will be marketed. A firm must find the combination of working capital
and inputs (assets) that minimizes the cost and time to produce a maximum variety of
products that are closely targeted to different customer segments.

To maximize market share, line managers want to plan products that will personally
satisfy each customer. They segment the market and define a variety of products for
which there is high demand at different prices. Product lines are the collections of these
products.

To reduce costs and time-to-market, technology managers want to build an asset port-
folio that can be used to develop many different products in a product family. A product
family is defined as the variety of products that can be produced using the assets. The
scope of the family depends on the robustness of the abstraction that unifies the assets
into a functioning system: a design or architecture, the physics or business rules, a co-
ordination strategy, or the system platform.

The degree to which the cost savings of a product family can apply to the variety of
products in a product line can be measured by economies of scope (Figure 5-2). To im-
prove economies of scope, technology managers focus on flexibility (software changes
per day) and the tradeoff between skills and automation [Schonberg 86]. They maxi-
mize product variety while minimizing the number and variation of assets. Maximum
economy occurs when a product family fully supports one or many product lines.

Economies of scope can also inform outsourcing decisions. Software assets are out-
sourced when the company cannot add as much value as a supplier. This usually occurs
when the scope of the asset is much smaller in the company than in the marketplace. A
supplier enjoys greater economies because its market is larger, and a greater variety of
products gives the supplier more opportunities to nurture and leverage its expertise.

Many companies organize and manage around product lines to ensure that they are fo-
cused on maximizing revenue streams and market share. These lines tend to isolate
technology: There often is no organizational entity whose control spans the technical
commonalities across product lines. Localizing all development in individual product
lines impairs synergy and can cause redundancies and inefficiencies across the organi-
zation. Commonality of solutions and core technology are neither exploited nor given
the critical mass of resources [Prahalad 90].

l. To improve economies of scale, managers typically focus on productivity (lines of code per day) and the
tradeoff between labor and capital. They maximize quantity while minimizing variation in production.

CMU/SEI-96-TR-010 51

Chapter 5 Summary

PRODUCT STRATEGY 1

Product lines Product family

Variety of products deter-
mined by market analysis

Low economies of scope
• fewer profit opportunities
• market timing penalty
• higher costs

PRODUCT STRATEGY 2

Product lines Product family

0
High economies of scope
• lower recurring costs
• faster time-to-market
• greater flexibility

Figure 5-2: Different Product Strategies

Thus, focusing on a product family is required. If technology managers invest in im-
proving the development capability across product lines — improving core technology,
extending the asset base, introducing new generations — then previously unavailable
opportunities to develop markets become possible. The capability to integrate technol-
ogies embodied in software assets in new ways drives marketing to investigate oppor-
tunities based on what the company can quickly produce.

The product strategy of the company is no longer solely market driven. The company
orients its product lines to market segments that can be supported by a product family.
It nurtures the evolution of product generations to anticipate and open new markets.
The company can then create shifts in the market and is more ready to meet market
shifts created by their competitors. The company will achieve greater economies of
scope.

52 CMU/SEI-96-TR-010

Appendix A References

[Boehm 95]

[Boone 89]

[Brealey 91]

[Brownsword 96]

[Clements 96]

[Cusumano91]

[Deming 93]

[Dewey 95]

[Dixit 94]

[Dixit 95]

[Dumain 89]

Boehm, B.; Clark, C; Horowitz, E.; & Westland, C. "Cost Models
for Future Software Life Cycle Processes: COCOMO 2.0." Annals
of Software Engineering Special Volume on Software Process and
Product Measurement. Amsterdam, The Netherlands: Baltzer AG,
Science Publishers, 1995.

Boone, L. & Kurtz, K. Contemporary Marketing, 6th Edition. Chi-
cago, IL: Dry den Press, 1989.

Brealey, R. & Myers, S. Principles of Corporate Finance. NewY-
ork, NY: McGraw-Hill, 1991.

Brownsword, L. & Clements, P. A Case Study in Successful Product
Line Development (CMU/SEI-96-TR-16). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 1996.

Clements, P. & Northrop, L. Software Architecture: An Executive
Overview (CMU/SEI-96-TR-003). Pittsburgh, PA: Software Engi-
neering Institute, Carnegie Mellon University, 1996.

Cusumano, M. Japan's Software Factories. New York, NY: Oxford
University Press, 1991.

Deming, E. The Essential Deming Videotapes. Cambridge MA:
Center for Advanced Engineering Study, Massachusetts Institute of
Technology, 1993.

Dewey, R. Streamlining Software Development (Report No. 833).
Los Angeles, CA: SRI International Business Intelligence Program,
1995.

Dixit, A. & Pindyck, R. Investment Under Uncertainty. Princeton,
NJ: Princeton University Press, 1994.

Dixit, A. & Pindyck, R. "The Options Approach to Capital Invest-
ment." Harvard Business Review 73, 3 (May-June 1995): 105-115.

Dumaine, B. "How Managers Can Succeed Through Speed." For-
tune 119,4 (February 1989): 54.

CMU/SEI-96-TR-010 53

Appendix A References

[Gaff ney 92]

[Gamma 94]

[Garlan 94]

[Guimaräes 96]

[Henderson-
Sellers 93]

[HP 93]

[Hull 94]

[Huston 88]

[Kotier 91]

[Lanergan 84]

[Lim 92]

[Macala 96]

Gaffney, J. & Cruickshank, R. "A General Economics Model of
Software Reuse." Proceedings of International Conference on Soft-
ware Engineering. Melbourne, Australia, May 11-15, 1992. New
York, NY: ACM, 1992.

Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns,
Elements of Reusable Object-Oriented Software. Reading, MA: Ad-
dison-Wesley Publishing Company, 1995.

Garlan, D.; Allen R.; & Ockerbloom, J. "Architectural Mismatch or
Why It's Hard to Build Systems out of Existing Parts." Proceedings
of the 17th International Conference on Software Engineering. Se-
attle, WA, April 23-30 ,1995. New York, NY: ACM, 1995.

Guimaräes, M. Real Options Tutorial [online]. Available WWW
<URL:http://www.puc-rio.br/marco.ind/tutorial.html> (1996).

Henderson-Sellers, B. "The Economics of Reusing Library Class-
es." Journal of Object-Oriented Programming 6, 4 (July-August
1993): 43-50.

Hewlett Packard Laboratories. Company Presentation on Systemat-
ic Software Reuse. Palo Alto, CA: Hewlett Packard Laboratories,
1993.

Hull, J. Options, Futures and Other Derivative Securities, 2nd ed.
Englewood Cliffs, NJ: Prentice-Hall, 1994.

Huston, J. & Butler, R. "The Location of Airline Hubs." Southern
Economic Journal, 57,4 (April 1991): 975-981.

Kotier, P. & Armstrong, G. Principles of Marketing, 5th edition. En-
glewood Cliffs, NJ: Prentice Hall, 1991.

Lanergan, R. & Grasso, C. "Reusability in Programming: A Survey
of the State of the Art." IEEE Transactions on Software Engineering
SE-10, 9 (September 1984): 488-494.

Lim, W. "Cost Justification Model for Software Reuse." Proceed-
ings of the WISR '92 5th Annual Workshop on Software Reuse. Palo
Alto, CA, October 26-29, 1992. Palo Alto, CA: Hewlett-Packard,
1992.

Macala, R.; Stuckey, L.; & Gross, D. "Managing Domain-Specific,
Product-Line Development." IEEE Software 13, 3 (May 1996): 57-
67.

54 CMU/SEI-96-TR-010

[McDonald 95]

[Meyer 93]

[Mili 95]

[Myers 84]

[Panzar81]

[Parker 88]

[Pindyck91]

[Poulin 93]

[Prahalad 90]

[Rix 92]

[Roussel 91]

[Sanderson 91]

[Schach 94]

McDonald, M. & Dunbar, I. Market Segmentation. London, En-
gland: Macmillian Press Ltd, 1995.

Meyer, M. & Utterback, J. "The Product Family and the Dynamics
of Core Capability." Sloan Management Review (Spring 1993).

Mili, H.; Mili, F.; & Mili A. "Reusing Software: Issues and Research
Directions." IEEE Transactions on Software Engineering 21, 6
(June 1995): 528-562.

Myers, S. "Finance Theory and Financial Strategy ." Interfaces 14,
1 (January-February 1984): 126-137.

Panzar, J. & Willig, R. "Economies of Scope." American Economic
Review 71 (May 1981): 268-272.

Parker, M. & Benson, R. Information Economics: Linking Business
Performance to Information Technology. Englewood Cliffs, N.J:
Prentice Hall, 1988.

Pindyck, R. & Rubinfeld, D. Microeconomics. New York, NY:
Macmillan Publishing Company, 1991.

Poulin, J; Caruso, J; & Handcock, D. "The Business Case for Soft-
ware Reuse." IBM Systems Journal 32, 4 (1993): 567-594.

Prahalad, C.K. & Hamel, G. "The Core Competence of the Corpo-
ration." Havard Business Review 68, 3 (May-June 1990): 79-91.

Rix, M. "Case Study of a Successful Firmware Reuse Program."
Proceedings of the WISR '92 5th Annual Workshop on Software Re-
use. Palo Alto, CA, October 26-29, 1992. Palo Alto, CA: Hewlett-
Packard, 1992.

Roussel, P.; Saad, K.; & Erickson, T. Third Generation R&D, Man-
aging the Link to Corporate Strategy. Boston, MA: Harvard Busi-
ness School Press, 1991.

Sanderson, S.W. "Cost Models for Evaluating Virtual Design Strat-
egies in Multicycle Product Families." Journal of Engineering and
Technology Managment, 8 (1991): 330-358.

Schach, S. "The Economic Impact of Software Reuse on Mainte-
nance." Software Maintenance: Research and Practice, 6 (1994).

CMU/SEI-96-TR-010 55

Appendix A References

[Schonberger 86] Schonberger, J. World Class Manufacturing. New York, NY: Mac-
millan Publishing Company, 1986.

[Stark 93] Stark, Mike. "Impacts of Object-Oriented Technologies: Seven
Years of SEL Studies." Proceedings of OOP SLA '93. New York,
NY: ACM, 1993.

[Ward 95] Ward, A.; Liker, J.; & Sobek II, D. "The Second Toyota Paradox:
How Delaying Decisions Can Make Better Cars Faster." Sloan Man-
agement Review 36, 5 (Spring 1995): 43.

56 CMU/SEI-96-TR-010

Appendix B Glossary

application engineering
an engineering process that develops a family of software products from partial solu-
tions or knowledge embodied in software assets

deployment strategy
a plan of action for phasing in a portfolio of assets

The process of developing and deploying a portfolio is divided into a sequence of steps
that mitigate undesirable events (uncertainties) and capitalize on desirable ones. The se-
quence of steps constitutes a deployment strategy. The strategy defines the manage-
ment decision points in a decision tree.

economies of scale
the condition where fewer inputs such as effort and time are needed to produce greater
quantities of a single output

economies of scope
the condition where fewer inputs such as effort and time are needed to produce a greater
variety of outputs

Greater business value is achieved by jointly producing different outputs. Producing
each output independently fails to leverage commonalities that affect costs. Economies
of scope occur when it is less costly to combine two or more products in one production
system than to produce them separately.

investment analysis
a process of estimating the value of an investment proposal to an organization

Investment analysis involves quantifying the costs and benefits of the investment, ana-
lyzing the uncertainties, and constructing a spending strategy. This analysis links the
strategic and technical merits of an investment to its financial results.

net present value (NPV)
the net value in today's dollars of an investment

NPV is typically calculated by discounting at some interest rate the net income (or loss)
that occurs within a time period from an investment.

CMU/SEI-96-TR-010 57

Appendix B Glossary

opportunity analysis
an analysis that compares the costs and benefits of using a resource in one way against
the costs and benefits of using the same resource in an alternative way

An opportunity cost is the value of a resource in a competing use. Opportunity analysis
discounts the benefit of an approach against its opportunity costs - the benefits of using
a resource in an alternative way.

pattern
a partial solution that is replicated from product to product, or knowledge that is reap-
plied in building each product

The American Heritage Dictionary defines a pattern as "a consistent, characteristic
form, style, or method." This is the spirit in which the term is used in this report. Our
use of the word expands the concept, yet is consistent with that described in some ob-
ject-oriented literature. Gamma concentrates on patterns that solve design problems
[Gamma 94], while we concentrate on patterns that exist in the composition of multiple
products or in the production of multiple products. The objective is to find similarities
that reduce engineering tasks and decisions.

portfolio
a group of investments exhibiting desired risk, reward, and other business attributes

A portfolio helps management visualize assets as pieces of an investment strategy.
Mangers construct a portfolio by choosing the assets that optimize investment objec-
tives and diversify risks.

product family
the set of different products that can be produced from a common design, shared assets,
and an application engineering process

Membership in the set depends on the abstraction unifying the assets into a functioning
system: an architecture, the physics or business rules, or the hardware platform. This
definition is an elaboration of definition used by Marc Meyer: "[the set of] products that
share a common platform [design and standards] but have specific features and func-
tionality required by different sets of customers" [Meyer 93].

product line
1. a group of products that provide a core benefit yet differ along attributes which affect
the buying behavior of different customer groups

2. a group of products that are closely related, either because they function in a similar
manner, are sold to the same customer groups, are marketed through the same types of
outlets or fall within given price ranges

58 CMU/SEI-96-TR-010

An example of a product line is the variety of camcorders sold by Panasonic. Products
are not related in a product line because they share a common implementation; they are
related by market and customer criteria. Product lines are lengthened or pruned accord-
ing to changes in markets, competition and customer preferences. The source of the 2nd
definition is Marketing Definitions: A Glossary of Marketing Terms, Chicago: Ameri-
can Marketing Association, 1960.

product strategy
an exposition of the products that an organization plans to sell over time

The exposition includes a description of the products and a rationale for why they were
selected. The marketing strategy, delivery window, and revenue projections for each
product are also discussed.

product variety
1. a set of products that require software changes

2. a variable denoting a set of products considered in investment analysis

production system
a system of people, functions, and assets organized to produce, distribute, and improve
a family of products. Two functions included in the system are domain engineering and
application engineering.

robustness
the quality of an asset to be changed or extended without other properties either being
lost or becoming unpredictable

scope
1. the area or content that something circumscribes

2. a. the breadth of function b. the opportunities of use c. the full extent of variation:
range

3. the classes of phenomena included in a software description or a domain

The first definition is the first perspective we take in the approach: We define the vari-
ety of products to circumscribe our investigation of patterns. Our viewpoint is a product
line, looking in to identify robust commonalities. The second definition is the perspec-
tive adopted to analyze the economies of an asset. Our viewpoint is a software asset,
looking out at the range of uses. The third definition deals with the ontological content
of an asset — what it is and is not. The scope of a world rainfall map is different from
the scope of a world population map [Jackson 95].

CMU/SEI-96-TR-010 59

Appendix B Glossary

software asset
a description of a partial solution (such as a component or design document) or knowl-
edge (such as a requirement database or test procedures) that application engineers use
to build or update software products

Software assets codify patterns in a tangible form so that engineers can use them. Typ-
ically assets are components and tools that engineers use to proliferate products. Exam-
ples include architectures, code generators, design templates, product technology
notebooks, core subsystems, implementation standards, and test suites.

60 CMU/SEI-96-TR-010

UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

N/A

lb. RESTRICTIVE MARKINGS

None

3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for Public Release
Distribution Unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-96-TR-010

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESC-96-TR-010

6a. NAME OF PERFORMING ORGANIZATION

Software Engineering Institute
6b. OFFICE SYMBOL
(if applicable)

SEI

7a. NAME OF MONITORING ORGANIZATION

SEI Joint Program Office

6c. ADDRESS (city, state, and zip code)

Carnegie Mellon University
Pittsburgh PA 15213

7b. ADDRESS (city, state, and zip code)

HQ ESC/AXS
5 Eglin Street
HanscomAFB, MA 01731-2116

8a. NAME OFFUNDING/SPONSORING
ORGANIZATION

SEI Joint Program Office

8b. OFFICE SYMBOL
(if applicable)

ESC/AXS

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F19628-95-C-0003

8c. ADDRESS (city, state, and zip code))

Carnegie Mellon University
Pittsburgh PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO

63756E

PROJECT
NO.

N/A

TASK
NO
N/A

WORK UNIT
NO.

N/A
11. TITLE (Include Security Classification)

Investment Analysis of Software Assets for Product Lines

12. PERSONAL AUTHOR(S)
James Withey

13a. TYPE OF REPORT

Final
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (year, month, day)

November 1996
15. PAGE COUNT

60

16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR.

18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

software reuse (systematic), return on investment, product line development, econo-
mies of scope, software assets, production system, capital budgeting, business case
analysis, portfolio analysis, net present value, dynamic discounted cash flow analy-
sis, investment uncertainty and risk, product families.product lines, technology transi-
tion, decision trees

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Group, product line, and program managers are faced with allocating resources to projects. Should
all resources be dedicated to meet near-term deliverables? Or should some be siphoned off to build
software assets that may improve quality, flexibility, and reduce cost and time-to-market of future
products in the product line? These managers also have to determine which assets to buy or build.
The choices are many, ranging from reusable code components to design models to application gen-
erators, and each has a different risk and cash flow profile.

This report introduces an approach that will help managers make these allocation decisions. The

(please turn over)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED ■ SAMEASRPTn DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified, Unlimited Distribution

22a. NAME OF RESPONSIBLE INDIVIDUAL

Thomas R. Miller, Lt Col, USAF
22b. TELEPHONE NUMBER (include area code)

(412)268-7631
22c. OFFICE SYMBOL

ESC/AXS (SEI)

DDFORM 1473, 83 APR EDITION of 1 JAN 73 IS OBSOLETE UNLIMITED, UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

ABSTRACT — continued from page one, block 19

report outlines a planning and communication tool for analyzing investments in software assets
for product lines.

Although the report is not a guidebook, the concepts, criteria, and investment modeling tech-
niques will be useful in making and justifying proposals for funding. The concepts are drawn from
the fields of microeconomics, corporate finance, marketing, R&D technology management, and
software reuse.

